
8051 Demo Kit
Getting Started with the 8051

 Microcontroller Development Tools

User’s Guide

ii Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1990-1998 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.

Keil C51™ and dScope™ are trademarks of Keil Elektronik GmbH.
Microsoft®, MS-DOS®, and Windows™ are trademarks or registered trademarks
of Microsoft Corporation.
IBM®, PC®, and PS/2® are registered trademarks of International Business
Machines Corporation.
Intel®, MCS® 51, ASM-51®, and PL/M-51® are registered trademarks of Intel
Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Keil Software 8051 Demo Kit iii

Preface
This manual is an introduction to the Keil Software 8051 microcontroller
software development tools. It introduces new users and interested readers to
our product line. With nothing more than this book, you should be able to
successfully run and use our tools. This user’s guide contains the following
chapters.

“Chapter 1. Introduction” gives an overview of this user’s guide.

“Chapter 2. Installation” describes how to install our software and how to setup
an operating environment for the tools.

“Chapter 3. 8051 Product Line” discusses the different products that we offer
for the 8051 microcontroller. Read this chapter to determine which product
provides the tools you need.

“Chapter 4. 8051 Development Tools” describes the major features of our 8051
development tools including the C compiler, assembler, debugger, and integrated
development environment.

“Chapter 5. Using the 8051 tools” describes the provided sample programs
along with a step-by-step guide that shows how to build them using our tools.

“Chapter 6. Hardware Products” introduces our hardware-based tools that you
can use to aid in development and debugging. Our evaluation boards for the
80C517A and 87C520 and our EPROM emulator are discussed.

“Chapter 7. Real-Time Kernels” discusses the RTX-51 Tiny and RTX-51 Full
real-time operating systems. This chapter provides an overview of multitasking
systems, why they are desirable, and how they are used.

“Chapter 8. Command Reference” briefly describes the commands and controls
for our 8051 development tools.

NOTE
This manual assumes that you are familiar with Microsoft Windows and the
hardware and instruction set of the 8051 microcontroller.

iv Preface

Document Conventions
This document uses the following conventions:

Examples Description

README.TXT Bold capital text is used for the names of executable programs, data files,
source files, environment variables, and commands you enter at the MS-
DOS command prompt. This text usually represents commands that you
must type in literally. For example:

CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Courier Text in this typeface is used to represent information that displays on
screen or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For example,
projectfile in a syntax string means that you must supply the actual project
file name.

Occasionally, italics are also used to emphasize words in the text.

Elements that
repeat…

Ellipses (…) are used to indicate an item that may be repeated.

Omitted code
.
.
.

Vertical ellipses are used in source code listings to indicate that a
fragment of the program is omitted. For example:

void main (void) {
.
.
.
while (1);

�Optional Items� Optional arguments in command-line and option fields are indicated by
double brackets. For example:

C51 TEST.C PRINT �(filename)�
{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a

group of items from which one must be chosen. The braces enclose all of
the choices and the vertical bars separate the choices. One item in the list
must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

Point Move the mouse until the mouse pointer rests on the item desired.

Click Quickly press and release a mouse button while pointing at the item to be
selected.

Drag Press the left mouse button while on a selected item. Then, hold the
button down while moving the mouse. When the item to be selected is at
the desired position, release the button.

Double-Click Click the mouse button twice in rapid succession.

Keil Software 8051 Demo Kit v

Contents

Chapter 1. Introduction..1
Manual Topics .. 2
Evaluation and Demo Kits .. 2
Types of Users .. 3
Changes to the Documentation ... 3
Requesting Assistance... 4

Chapter 2. Installation..5
System Requirements.. 6
Backing Up Your Disks .. 7
Installing the Software .. 7
Directory Structure ... 8
Environment Settings.. 9
Improving System Performance.. 10

Chapter 3. 8051 Product Line..13
8051 Development Tool Kits.. 13
Tool Kit Comparison Chart .. 18

Chapter 4. 8051 Development Tools..19
8051 Microcontroller Family .. 19
C51 Optimizing C Cross Compiler ... 21
A51 Macro Assembler .. 38
BL51 Code Banking Linker/Locator .. 40
OC51 Banked Object File Converter .. 44
OH51 Object-Hex Converter .. 44
LIB51 Library Manager.. 44
dScope-51 for Windows ... 45
µVision/51 for Windows .. 45

Chapter 5. Using the 8051 tools ...47
Starting µVision and dScope .. 48
µVision IDE Overview ... 48
dScope Simulator/Debugger Overview... 55
Sample Programs .. 64
HELLO: Your First 8051 C Program .. 66
MEASURE: A Remote Measurement System... 73
BADCODE: An Example with Syntax Errors ... 89

Chapter 6. Hardware Products ...91
ProROM EPROM Emulator ... 91
MCB517A Evaluation Board.. 92
MCB520 Evaluation Board .. 93

Chapter 7. Real-Time Kernels ...95
RTX-51 Real-Time Operating System.. 95

vi Contents

Chapter 8. Command Reference ...107
A51 Macro Assemblers...108
C51 Compiler..109
L51/BL51 Linker/Locator ...111
OC51 Banked Object File Converter ..113
OH51 Object-Hex Converter ..113
LIB51 Library Manager ..113

Index..114

Keil Software 8051 Demo Kit 1

Chapter 1. Introduction
Thank you for allowing Keil Software to provide you with software development
tools for the 8051 family of microcontrollers. With our tools, you can generate
embedded applications for the multitude of 8051 derivatives. Our 8051
development tools are listed below:

n C51 Optimizing C Cross Compiler,

n A51 Macro Assembler,

n 8051 Utilities (linker, object file converter, library manager),

n dScope for Windows™ Source-Level Debugger/Simulator,

n µVision for Windows™ Integrated Development Environment.

These tools are combined into the kits described in “Chapter 3. 8051 Product
Line” on page 13. The individual tools are described in detail in “Chapter 4.
8051 Development Tools” on page 19.

In addition to the above development tools, we also provide real-time kernels,
evaluation boards, and debugging hardware. Refer to “Chapter 7. Real-Time
Kernels” on page 95 and “Chapter 6. Hardware Products” on page 91 for more
information about these products. Our tools are designed for the professional
software developer, but any level of programmer can use them to get the most
out of the 8051 hardware.

2 Chapter 1. Introduction

Manual Topics
This manual discusses a number of topics including how to:

n Install the software on your system (see “Chapter 2. Installation” on page 5)
and fine tune it for maximum performance (see “Improving System
Performance” on page 10),

n Select the best tool kit for your application (see “Chapter 3. 8051 Product
Line” on page 13),

n Use the 8051 development tools (see “Chapter 4. 8051 Development Tools”
on page 19),

n Run the included sample programs (see “Chapter 5. Using the 8051 tools” on
page 47).

If you want to get started immediately, you may do so by installing the software
(refer to “Chapter 2. Installation” on page 5) and running the sample programs
(refer to “Chapter 5. Using the 8051 tools” on page 47). This is all you need to
do to begin using this kit.

Evaluation and Demo Kits
Keil Software provides two kits that let you evaluate our tools.

The C51 Demo Kit includes demonstration versions of our tools. The tools in
the Demo Kit do not generate actual object code. They generate listing files
where you can see the code generated by the compiler and other tools.

The C51 Evaluation Kit includes evaluation versions of our tools. The tools in
the Evaluation Kit let you generate applications up to 2 Kbytes in size. You may
use this kit to evaluate the effectiveness of our tools and to generate small target
applications.

Both kits include this user’s guide and software. This user’s guide is also
included in each of our tool kits.

Keil Software 8051 Demo Kit 3

Types of Users
This manual addresses three types of users: evaluation users, new users, and
experienced users.

Evaluation Users are those users who have not yet purchased the software but
have requested the evaluation package to get a better feel for what the tools do
and how they perform. The evaluation package includes evaluation copies of the
development tools. You may use the included sample programs to get real-world
experience with our 8051 development tools. Even if you are only a evaluation
user, take the time to read this manual. It explains how to install the software,
provides you with an overview of the development tools, and introduces the
sample programs.

New Users are those users who are purchasing our 8051 development tools for
the first time. The included software provides you with the latest development
tool versions as well as sample programs. If you are new to the 8051 or the
tools, take the time to review the sample programs described in this manual.
This manual provides a quick tutorial and helps new or inexperienced users
quickly get started with the tools.

Experienced Users are those users who have previously used our 8051
development tools and are now upgrading to the latest 8051 tools. The software
included with a product upgrade contains the latest development tools, the
sample programs, and a full set of manuals.

Changes to the Documentation
Last minute changes and corrections to the software and manuals are listed in the
README.TXT file which is included in the root directory of your installation.
Take the time to read this file to determine if there are any changes that may
impact your installation.

4 Chapter 1. Introduction

Requesting Assistance
We are dedicated to providing you with the best embedded development tools
and documentation available. If you have suggestions or comments regarding
any of the printed manuals accompanying this product, please contact us. If you
think you have discovered a problem with the software, do the following before
calling technical support.

1. Read the sections in this manual that pertain to the job or task you are trying
to accomplish.

2. Make sure you are using the most current version of the software and utilities.

3. Isolate the problem to determine if it is a problem with the assembler,
compiler, linker, library manager, or another development tool.

4. Isolate software problems by reducing your code to a few lines.

If, after following these steps, you are still experiencing problems, report them to
our technical support group.

If you contact us by fax, be sure to include your name, your product serial
number and version number, and telephone numbers (voice and fax) where we
can reach you.

Try to be as detailed as possible when describing the problem you are having.
The more descriptive your example, the faster we can find a solution. If you
have a one-page code example demonstrating the problem, please fax it to us.

Keil Software 8051 Demo Kit 5

Chapter 2. Installation
This chapter explains how to setup an operating environment and how to install
the software on your hard disk. Before starting the installation program, you
must do the following:

n Verify that your computer system meets the minimum requirements.

n Make a copy of the installation diskette for backup purposes.

NOTE
This chapter refers to various MS-DOS commands which may be used to
customize your operating environment. The SET and PATH commands, for
example, are used to initialize environment variables used by the compiler and
utilities. If you are not familiar with these commands and other MS-DOS
operations mentioned in this chapter, please refer to your DOS user’s guide.

6 Chapter 2. Installation

System Requirements
There are minimum hardware and software requirements that must be satisfied to
ensure that the compiler and utilities function properly.

For our Windows-based tools, you must have the following:

n 100% IBM compatible 386 or higher PC,

n Windows 3.1 or higher,

n 4 MB RAM minimum,

n Hard disk with 6 MB free disk space.

For our DOS-based tools, you must have the following:

n 100% IBM compatible 386 or higher PC with 640 KB RAM,

n MS-DOS Version 3.1 or higher,

n Hard disk with 6 MB free disk space.

The C compiler and utilities require that you have at least 20 files and 20 buffers
defined in your CONFIG.SYS file. Additionally, you need enough environment
space for the environment variables used by the compiler and utilities (see
“Environment Settings” on page 9).

Your CONFIG.SYS file should look similar to the following:

BUFFERS=20
FILES=20
SHELL=C:\COMMAND.COM /e:1024 /p

If you receive the message Out of environment space from DOS, you can
increase the amount of environment space by increasing the number 1024 in the
above example. Refer to your DOS user’s guide for more information.

Keil Software 8051 Demo Kit 7

Backing Up Your Disks
We strongly suggest that you make a backup copy of the installation diskettes
using the DOS COPY or DISKCOPY commands. Then, use the backup disks to
install the software. Be sure to store the original disks in a safe place in case
your backups are lost or damaged.

Installing the Software
All of our products come with an installation program which allows easy
installation of our software.

Installing DOS-Based Products

To install DOS-based products, insert the first product diskette into Drive A and
enter the following command line at the DOS prompt:

A:INSTALL

Then, follow the instructions displayed by the installation program.

Installing Windows-Based Products

To install Windows-based products…

n Insert the first product diskette into Drive A,

n Select the Run… command from the File menu in the Program Manager,

n Enter A:SETUP at the Command Line prompt,

n Select the OK button.

Then, follow the instructions displayed by the installation program.

8 Chapter 2. Installation

Directory Structure
The installation program copies the development tools into subdirectories of the
following base directories. The directory used depends on the kit being
installed.

Directory Description

\C51 8051 development tools.

\C51EVAL 8051 evaluation tools.

After creating the appropriate directory, the installation program copies the
development tools into the subdirectories listed in the following table.

Subdirectory Description

…\ASM Assembler include files.

…\BIN Executable files.

…\DS51 dScope-51 for DOS IOF drivers.

…\EXAMPLES Sample applications.

…\RTX51 RTX-51 Full files.

…\RTX_TINY RTX-51 Tiny files.

…\INC C compiler include files.

…\LIB C compiler library files and startup code.

…\MON51 Target monitor files.

…\TS51 tScope-51 for DOS IOT drivers.

This table lists a complete installation that includes the entire line of 8051 development
 tools. Your installation may vary depending on the products you purchased.

Keil Software 8051 Demo Kit 9

Environment Settings
The compiler and utilities require entries in the DOS environment table that
specify the path to include files and libraries. In addition, you must include the
…\BIN\ directory in your PATH .

The following table lists the environment variables, their default paths, and a
brief description.

Variable Path Description

PATH \C51\BIN Specifies the path of the 8051 development tools.

PATH \C51EVAL\BIN Specifies the path of the 8051 evaluation tools.

TMP Specifies the path for temporary files generated. For best
performance, the path specified should be a RAM disk. If this
environment variable is specified, the path must exist. If the
path does not exist, the tools abort reporting a fatal error.

C51INC \C51\INC Specifies the path where the standard C51 compiler include
files are located.

C51LIB \C51\LIB Specifies the path where the standard C51 compiler library files
are located.

NOTE
This manual makes references to programs and files in the \C51\… directory.
This directory is equivalent to the \C51EVAL\… directory.

Typically, environment settings are automatically installed in your
AUTOEXEC.BAT file by the installation program. If you wish to put these settings
in a separate batch file, the environment settings must be entered as follows:

8051 Development Tools 8051 Evaluation Tools

PATH=C:\C51\BIN;... PATH=C:\C51EVAL\BIN;...

SET C51INC=C:\C51\INC SET C51INC=C:\C51EVAL\INC

SET C51LIB=C:\C51\LIB SET C51LIB=C:\C51EVAL\LIB

10 Chapter 2. Installation

Improving System Performance
There are two methods you can employ to improve performance of the C51
compiler and utilities. These techniques are generic and should help boost
performance of most applications. You may:

n Provide a RAM disk for the compiler and utilities to use for temporary files,

n Use a disk cache to store the most recently accessed disk files.

Using a RAM Disk

If your computer has sufficient extended or expanded memory available, you
should consider using a RAM disk. A RAM disk is a memory-based disk
emulator. Because the contents of a RAM disk are stored in RAM, access is
very fast.

If you are using a RAM disk, you can set the value of the TMP environment
variables to the drive name of the RAM disk. This speeds up the execution of
the many of the tools and utilities because they can use the RAM disk for
temporary files.

A number of RAM disk software packages are available. RAMDRIVE.SYS and
VDISK.SYS are the names of the RAM disk programs that are most commonly
shipped with DOS. Refer to your DOS manual to learn how to install these
programs.

Keil Software 8051 Demo Kit 11

Using a Disk Cache

A disk cache utilizes a large memory pool to temporarily store information read
from disk. When the computer accesses the disk, it first checks the cache to see
if the desired information is already in the cache. If it is, the information is read
from the cache memory instead of from the disk. This is significantly faster than
waiting for the disk drive to read the information.

Typically, software development involves an edit-compile-edit-compile… cycle.
In these situations, a disk cache improves the performance of your editor,
assembler, compiler, and linker. The editor, the compiler, source file, and object
file can all be held in the cache, and disk accesses are kept to a minimum.

Version 5.0 and Version 6.0 of MS-DOS both come with a disk-caching utility
called SMARTDRV.SYS. Refer to your DOS manual to learn how to install and use
this program.

12 Chapter 2. Installation

Keil Software 8051 Demo Kit 13

Chapter 3. 8051 Product Line
Keil Software provides the premier 8051 development tools in the industry. To
help you become familiar with how we distribute our tools, we would like to
introduce the concept of a tool kit.

A tool kit is comprised of several application programs that you use to create
your 8051 application. You may use an assembler to assemble your 8051
assembly program, you may use a compiler to compile your C source code into
an object file, and you may use a linker to create an absolute object module
suitable for your in-circuit emulator.

While it makes little sense to have a compiler without a linker, it also makes
little sense to have a linker without a compiler or assembler. Therefore, our
tools are packaged into various kits.

Our 8051 kits are described below in the “8051 Development Tool Kits” section.

8051 Development Tool Kits
When you use the Keil Software tools, the 8051 project development cycle is
roughly the same as for any software development project.

1. Create source files in C or assembly.

2. Compile or assemble source files.

3. Correct errors in source files.

4. Link object files from compiler and assembler.

5. Test linked application.

Tool Kit Overview

The development cycle described above may be best illustrated by a block
diagram of the complete 8051 tool set.

14 Chapter 3. 8051 Product Line

As shown in this figure, files are
created by the µVision/51 IDE and
then passed to the C51 compiler or
A51 assembler. The compiler and
assembler process source files and
create relocatable object files.

Object files created by the compiler
and assembler may be used by the
LIB51 library manager to create a
library. A library is a specially
formatted, ordered program collection
of object modules that the linker can
process. When the linker processes a
library, only the object modules in the
library that are necessary for program
creation are used.

Object files created by the compiler
and assembler and library files created
by the library manager are processed
by the linker to create an absolute
object module. An absolute object file
or module is an object file with no relocatable code. All the code in an absolute
object file resides at fixed locations.

The absolute object file created by the linker may be used to program EPROM or
other memory devices. The absolute object module may also be used with the
dScope-51 debugger/simulator or with an in-circuit emulator.

The dScope-51 source level debugger/simulator is ideally suited for fast, reliable
high-level-language program debugging. The debugger contains a high-speed
simulator and a target debugger that let you simulate an entire 8051 system
including on-chip peripherals. By loading specific I/O drivers, you can simulate
the attributes and peripherals of a variety of 8051 derivatives. In conjunction
with Monitor-51, the debugger is even able to do source-level debugging on your
target hardware.

The RTX-51 real-time operating system is a multitasking kernel for the 8051
family. The RTX-51 real-time kernel simplifies the system design,
programming, and debugging of complex applications where fast reaction to
time critical events is essential. The kernel is fully integrated into the C51
compiler and is easy to use. Task description tables and operating system
consistency are automatically controlled by the BL51 code banking
linker/locator.

µVision/51

C
Library

RTX51LIB51
Library

Manager

Real-Time

System

BL51 Linker for Code-Banking

C51
Compiler

A51 Macro
Assembler

CPU &

Simulator
Monitor-51
Target Debugging

dScope-51
Source Leve -Debugger

Peripheral

Emulator &
PROM Programmer

Operating

Keil Software 8051 Demo Kit 15

Tool Kit Introduction

The preceding diagram shows the full extent of the Keil Software 8051
development tools. The tools listed in this diagram comprise the professional
developer’s kit described on the following pages. In addition to the professional
kit, Keil Software provides a number of other tool kits for the 8051 developer.
To best illustrate what is included in each tool kit, we describe the kits in
decreasing order of capability. The most capable kit, the professional
developer’s kit is described first.

PK51-C51 Professional Developer’s Kit

The PK51 C51 professional developer’s kit includes everything the professional
8051 developer needs to create sophisticated embedded applications. This tool
kit includes the following components:

n C51 Optimizing C Compiler,

n A51 Macro Assembler,

n BL51 Code Banking Linker/Locator,

n OC51 Banked Object File Converter,

n OH51 Object-Hex Converter,

n LIB51 Library Manager,

n dScope-51 Simulator/Debugger,

n tScope-51 Target Debugger,

n Monitor-51 ROM Monitor and Terminal Program,

n Integrated Development Environment,

n RTX-51 Tiny Real-Time Operating System.

In addition, the professional developer’s kit includes the following tools for
Windows users:

n dScope-51 Simulator/Debugger for Windows,

n µVision/51 Integrated Development Environment for Windows.

The professional developer’s kit can be configured for all 8051 derivatives. The
tools included in this kit run under DOS on any 100% IBM PC 386 or higher
compatible computer.

16 Chapter 3. 8051 Product Line

DK51-C51 Developer’s Kit

The DK51 C51 developer’s kit is designed for users who need a complete DOS-
based development system for the 8051. This kit lets you create sophisticated
embedded applications using a DOS-based development platform. This tool kit
includes the following components:

n C51 Optimizing C Compiler,

n A51 Macro Assembler,

n BL51 Code Banking Linker/Locator,

n OC51 Banked Object File Converter,

n OH51 Object-Hex Converter,

n LIB51 Library Manager,

n dScope-51 Simulator/Debugger,

n tScope-51 Target Debugger,

n Monitor-51 ROM Monitor and Terminal Program,

n Integrated Development Environment.

The developer’s kit can be configured for all 8051 derivatives. The tools
included in this kit run under DOS on any 100% compatible IBM PC 386 or
higher computer.

CA51-C51 Compiler Kit

The CA51 C51 compiler kit is the best choice for developers who need a C
compiler but not a debugging system. This kit lets you create 8051 C
applications for your target hardware. The compiler kit can be configured for all
8051 derivatives. The tools included in this kit run under DOS on any 100%
compatible IBM PC 386 or higher computer.

Keil Software 8051 Demo Kit 17

A51-A51 Macro Assembler Kit

The A51 assembler kit includes our 8051 assembler and all the utilities you need
to begin creating 8051 application. The assembler kit is easily configured for all
8051 derivatives. The tools included in this kit run under DOS on any 100%
compatible IBM PC 386 or higher computer.

DS51-dScope-51 Simulator Kit

The DS51 simulator kit provides a debugger/simulator for use with the A51
assembler kit and the CA51 compiler kit. With this kit, you can quickly locate
problems in your 8051 application because the simulator lets you step through
your code one instruction at a time. You can easily view program variables,
SFRs, and memory locations. This tool kit includes the following components:

n dScope-51 Simulator/Debugger,

n tScope-51 Target Debugger,

n Monitor-51 ROM Monitor and Terminal Program.

The simulator kit comes with drivers for most popular 8051 derivatives. The
tools included in this kit run under DOS on any 100% compatible IBM PC 386
or higher computer.

FR51-RTX-51 Full Real-Time Kernel

The RTX-51 Full kernel is a real-time operating system for the 8051
microcontroller. RTX-51 Full provides a superset of the features found in RTX-
51 Tiny and also includes BITBUS and CAN communication protocol interface
libraries. Refer to “Chapter 7. Real-Time Kernels” on page 95 for more
information about RTX-51 Tiny.

18 Chapter 3. 8051 Product Line

Tool Kit Comparison Chart
The following table provides a check list of the features found in each of our
development kits. Part numbers are listed across the top and features are listed
down the side. Use this cross reference to select the kit that best suits your
needs.

Support PK51 DK51 A51

8051 ä ä ä

Assembler ä ä ä

Compiler ä ä

Simulator ä ä

IDE ä ä ä

RTX ä

Windows ä

DOS ä ä ä

Keil Software 8051 Demo Kit 19

Chapter 4. 8051 Development Tools
This chapter discusses the features and advantages of the 8051 microprocessor
family and the development tools available from Keil Software. We have
designed our development tools to help you quickly and successfully complete
your job. For this reason, our tools are easy to use and are guaranteed to help
you achieve your design goals.

8051 Microcontroller Family
The 8051 has been available since the early 1980’s. With a wide variety of
outstanding features and peripherals, the 8051 CPU core is destined to see
service well into the next century. More than 200 different 8051 derivatives are
available today from a variety of chip vendors. More than half of all embedded
projects with a CPU use members of the 8051 microcontroller family. As an
embedded processor, the 8051 has no equal.

A typical 8051 family member contains the 8051 CPU core, data memory, code
memory, and some versatile peripheral functions. A flexible memory interface
lets you expand the capabilities of the 8051 using standard peripherals and
memory devices.

20 Chapter 4. 8051 Development Tools

8051 Development Tools

Keil Software provides the following development tools for the 8051:

n C51 Optimizing C Compiler (see page 21),

n A51 Macro Assembler (see page 38),

n BL51 Code Banking Linker/Locator (see page 40),

n OC51 Banked Object File Converter (see page 44),

n OH51 Object-Hex Converter (see page 44),

n LIB51 Library Manager (see page 44)

n dScope-51 for Windows (see page 45),

n µVision/51 for Windows (see page 45).

For information on the products which include these tools, refer to “Chapter 3.
8051 Product Line” on page 13.

NOTE
All of our 8051 tools utilize the Intel OMF51 object module format. The
development environment can be expanded with all Intel compatible tools such
as Intel PL/M-51 or iDCX-51 and with emulators from a wide range of
manufactures.

Keil Software 8051 Demo Kit 21

C51 Optimizing C Cross Compiler
The C programming language is a general-purpose programming language that
provides code efficiency, elements of structured programming, and a rich set of
operators. C is not a big language and is not designed for any one particular area
of application. Its generality, combined with its absence of restrictions, make C
a convenient and effective programming solution for a wide variety of software
tasks. Many applications can be solved more easily and efficiently with C than
with other more specialized languages.

The Keil Software C51 optimizing cross compiler for the MS-DOS operating
system is a complete implementation of the ANSI (American National Standards
Institute) standard for the C language. The C51 compiler generates code for the
8051 microprocessor but is not a universal C compiler adapted for the 8051
target. It is a ground-up implementation dedicated to generating extremely fast
and compact code for the 8051 microprocessor.

For most 8051 applications, the C51 compiler gives software developers the
flexibility of programming in C while matching the code efficiency and speed of
assembly language.

Using a high-level language like C has many advantages over assembly language
programming. For example:

n Knowledge of the processor instruction set is not required. A rudimentary
knowledge of the 8051’s memory architecture is desirable but not necessary.

n Register allocation and addressing mode details are managed by the compiler.

n The ability to combine variable selection with specific operations improves
program readability.

n Keywords and operational functions that more nearly resemble the human
thought process can be used.

n Program development and debugging times are dramatically reduced when
compared to assembly language programming.

n The library files that are supplied provide many standard routines (such as
formatted output, data conversions, and floating-point arithmetic) that may be
incorporated into your application.

n Existing routine can be reused in new programs by utilizing the modular
programming techniques available with C.

n The C language is very portable and very popular. C compilers are available
for almost all target systems. Existing software investments can be quickly
and easily converted from or adapted to other processors or environments.

22 Chapter 4. 8051 Development Tools

C51 Language Extensions

The C51 compiler is an ANSI compliant C compiler and includes all aspects of
the C programming language that are specified by the ANSI standard. A number
of extensions to the C programming language are provided to support the
facilities of the 8051 microprocessor. The C51 compiler includes extensions for:

n Data Types,

n Memory Types,

n Memory Models,

n Pointers,

n Reentrant Functions,

n Interrupt Functions,

n Real-Time Operating Systems,

n Interfacing to PL/M and A51 source files.

The following sections briefly describe these extensions.

Keil Software 8051 Demo Kit 23

Data Types

The C51 compiler supports the data types listed in the following table. In
addition to these scalar types, variables can be combined into structures, unions,
and arrays. Except as noted, you may use pointers to access these data types.

Data Type Bits Bytes Value Range

bit † 1 0 to 1

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 16 2 -32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647

unsigned long 32 4 0 to 4294967295

float 32 4 ±1.175494E-38 to ±3.402823E+38

sbit † 1 0 to 1

sfr † 8 1 0 to 255

sfr16 † 16 2 0 to 65535

† The bit, sbit, sfr, and sfr16 data types are specific to the 8051 hardware and the C51 compiler.
The are not a part of ANSI C and cannot be accessed through pointers.

The sbit, sfr, and sfr16 data types are included to allow access to the special
function registers that are available on the 8051. For example, the declaration:
sfr P0 = 0x80; declares the variable P0 and assigns it the special function
register address of 0x80. This is the address of PORT 0 on the 8051.

The C51 compiler automatically converts between data types when the result
implies a different data type. For example, a bit variable used in an integer
assignment is converted to an integer. You can, of course, coerce a conversion
by using a type cast. In addition to data type conversions, sign extensions are
automatically carried out for signed variables.

24 Chapter 4. 8051 Development Tools

Memory Types

The C51 compiler supports the architecture of the 8051 and its derivatives and
provides access to all memory areas of the 8051. Each variable may be
explicitly assigned to a specific memory space.

Memory Type Description

code Program memory (64 Kbytes); accessed by opcode MOVC
@A+DPTR.

data Directly addressable internal data memory; fastest access to
variables (128 bytes).

idata Indirectly addressable internal data memory; accessed across the
full internal address space (256 bytes).

bdata Bit-addressable internal data memory; allows mixed bit and byte
access (16 bytes).

xdata External data memory (64 Kbytes); accessed by opcode MOVX
@DPTR.

pdata Paged (256 bytes) external data memory; accessed by opcode
MOVX @Rn.

Accessing the internal data memory is considerably faster than accessing the
external data memory. For this reason, you should place frequently used
variables in internal data memory and less frequently used variables in external
data memory.

By including a memory type specifier in the variable declaration, you can specify
where variables are stored.

As with the signed and unsigned attributes, you may include memory type
specifiers in the variable declaration. For example:

char data var1;
char code text[] = "ENTER PARAMETER:";
unsigned long xdata array[100];
float idata x,y,z;
unsigned int pdata dimension;
unsigned char xdata vector[10][4][4];
char bdata flags;

If the memory type specifier is omitted in a variable declaration, the default or
implicit memory type is automatically selected. Function arguments and
automatic variables which cannot be located in registers are also stored in the
default memory area.

The default memory type is determined by the SMALL, COMPACT and
LARGE compiler control directives. These directives specify the memory
model to use for the compilation.

Keil Software 8051 Demo Kit 25

Memory Models

The memory model determines the default memory type used for function
arguments, automatic variables, and variables declared with no explicit memory
type. You specify the memory model on the command line using the SMALL,
COMPACT, and LARGE control directives. By explicitly declaring a variable
with a memory type specifier, you may override the default memory type.

SMALL In this model, all variables default to the internal data memory of
the 8051. This is the same as if they were declared explicitly
using the data memory type specifier. In this memory model,
variable access is very efficient. However, all data objects, as
well as the stack must fit into the internal RAM. Stack size is
critical because the stack space used depends upon the nesting
depth of the various functions. Typically, if the BL51 code
banking linker/locator is configured to overlay variables in the
internal data memory, the small model is the best model to use.

COMPACT Using compact model, all variables default to one page of
external data memory. This is the same as if they were
explicitly declared using the pdata memory type specifier. This
memory model can accommodate a maximum of 256 bytes of
variables. The limitation is due to the addressing scheme used,
which is indirect through registers R0 and R1. This memory
model is not as efficient as the small model, therefore, variable
access is not as fast. However, the compact model is faster than
the large model. The high byte of the address is usually set up
via port 2. The compiler does not set this port for you.

LARGE In large model, all variables default to external data memory.
This is the same as if they were explicitly declared using the
xdata memory type specifier. The data pointer (DPTR) is used
for addressing. Memory access through this data pointer is
inefficient, especially for variables with a length of two or more
bytes. This type of data access generates more code than the
small or compact models.

NOTE
You should always use the SMALL memory model. It generates the fastest,
tightest, and most efficient code. You can always explicitly specify the memory
area for variables. Move up in model size only if you are unable to make your
application fit or operate using SMALL model.

26 Chapter 4. 8051 Development Tools

Pointers

The C51 compiler supports pointer declarations using the asterisk character
(‘*’). You may use pointers to perform all operations available in standard C.
However, because of the unique architecture of the 8051 and its derivatives, the
C51 compiler supports two different types of pointers: memory specific pointers
and generic pointers.

Generic Pointers

Generic pointers are declared in the same way as standard C pointers. For
example:

char *s; /* string ptr */
int *numptr; /* int ptr */
long *state; /* long ptr */

Generic pointers are always stored using three bytes. The first byte is for the
memory type, the second is for the high-order byte of the offset, and the third is
for the low-order byte of the offset.

Generic pointers may be used to access any variable regardless of its location in
8051 memory space. Many of the library routines use these pointer types for this
reason. By using these generic untyped pointers, a function can access data
regardless of the memory in which it is stored.

Keil Software 8051 Demo Kit 27

Memory Specific Pointers

Memory specific pointers always include a memory type specification in the
pointer declaration and always refer to a specific memory area. For example:

char data *str; /* ptr to string in data */
int xdata *numtab; /* ptr to int(s) in xdata */
long code *powtab; /* ptr to long(s) in code */

Because the memory type is specified at compile-time, the memory type byte
required by untyped pointers is not needed by typed pointers. Typed pointers
can be stored using only one byte (idata, data, bdata, and pdata pointers) or
two bytes (code and xdata pointers).

Comparison: Memory Specific & Generic Pointers

You can significantly accelerate an 8051 C program by using ‘memory specific’
pointers. The following sample program shows the differences in code & data
size and execution time for various pointer declarations.

Description Idata Pointer Xdata Pointer Generic Pointer

Sample Program char idata *ip;
char val;
val = *ip;

char xdata *xp;
char val;
val = *xp;

char *p;
char val;
val = *p;

8051 Program Code
Generated

MOV R0,ip
MOV val,@R0

MOV DPL,xp +1
MOV DPH,xp
MOV A,@DPTR
MOV val,A

MOV R1,p + 2
MOV R2,p + 1
MOV R3,p
CALL CLDPTR

Pointer Size 1 byte data 2 bytes data 3 bytes data

Code Size 4 bytes code 9 bytes code 11 bytes code + Lib.

Execution Time 4 cycles 7 cycles 13 cycles

28 Chapter 4. 8051 Development Tools

Reentrant Functions

A reentrant function can be shared by several processes at the same time. When
a reentrant function is executing, another process can interrupt the execution and
then begin to execute that same reentrant function. Normally, C51 functions
cannot be called recursively or in a fashion which causes reentrancy. The reason
for this limitation is that function arguments and local variables are stored in
fixed memory locations. The reentrant function attribute allows you to declare
functions that may be reentrant and, therefore, may be called recursively. For
example:

int calc (char i, int b) reentrant
 {
 int x;
 x = table [i];
 return (x * b);
 }

Reentrant functions can be called recursively and can be called simultaneously
by two or more processes. Reentrant functions are often required in real-time
applications or in situations where interrupt code and non-interrupt code must
share a function.

For each reentrant function, a reentrant stack area is simulated in internal or
external memory depending on the memory model.

NOTE
By selecting the reentrant attribute on a function by function basis, you can
select the use of this attribute where it’s needed without making the entire
program reentrant. Making an entire program reentrant may cause it to be
larger and consume more memory.

Keil Software 8051 Demo Kit 29

Interrupt Functions

The C51 compiler provides you with a method of calling a C function when an
interrupt occurs. This support allows you to create interrupt service routines in
C. You need only be concerned with the interrupt number and register bank
selection. The compiler automatically generates the interrupt vector and entry
and exit code for the interrupt routine. The interrupt function attribute, when
included in a declaration, specifies that the associated function is an interrupt
function. Additionally, you can specify the register bank used for that interrupt
with the using function attribute.

unsigned int interruptcnt;
unsigned char second;

void timer0 (void) interrupt 1 using 2 {
 if (++interruptcnt == 4000) { /* count to 4000 */
 second++; /* second counter */
 interruptcnt = 0; /* clear int counter */
 }
}

Parameter Passing

The C51 compiler passes up to three function arguments in CPU registers. This
significantly improves system performance since arguments do not have to be
written to and read from memory. Argument passing can be controlled with the
REGPARMS and NOREGPARMS control directives.

The following table lists the registers used for different arguments and data
types.

Argument
Number

char,
1-byte pointer

int,
2-byte pointer

long,
float

generic
pointer

1 R7 R6 & R7 R4 - R7 R1 - R3

2 R5 R4 & R5

3 R3 R2 & R3

If no registers are available for argument passing or too many arguments are
involved, fixed memory locations are used for those extra arguments.

30 Chapter 4. 8051 Development Tools

Function Return Values

CPU registers are always used for function return values. The following table
lists the return types and the registers used for each.

Return Type Register Description

bit Carry Flag

char, unsigned char, 1-byte pointer R7

int, unsigned int, 2-byte pointer R6 & R7 MSB in R6, LSB in R7

long, unsigned long R4 - R7 MSB in R4, LSB in R7

float R4 - R7 32-Bit IEEE format

generic pointer R1 - R3 Memory type in R3, MSB R2, LSB
R1

Register Optimizing

Depending on program context, the C51 compiler allocates up to 7 CPU registers
for register variables. Any registers modified during function execution are
noted by the C51 compiler within each module. The linker/locator generates a
global, project-wide register file which contains information of all registers
altered by external functions. Consequently, the C51 compiler knows the
register used by each function in an application and can optimize the CPU
register allocation of each C function.

Real-Time Operating System Support

The C51 compiler integrates well with both the RTX-51 Full and RTX-51 Tiny
multitasking real-time operating systems. The task description tables are
generated and controlled during the link process. For more information about
the RTX real-time operating systems, refer to “Chapter 7. Real-Time Kernels”
on page 95.

Keil Software 8051 Demo Kit 31

Interfacing to Assembly

You can easily access assembly routines from C and vice versa. Function
parameters are passed via CPU registers or, if the NOREGPARMS control is
used, via fixed memory locations. Values returned from functions are always
passed in CPU registers.

You can use the SRC directive to direct the C51 compiler to generate a file
ready to assemble with the A51 assembler instead of an object file. For example,
the following C source file:

unsigned int asmfunc1 (unsigned int arg){
 return (1 + arg);
}

generates the following assembly output file when compiled using the SRC
directive.

?PR?_asmfunc1?ASM1 SEGMENT CODE
PUBLIC _asmfunc1
 RSEG ?PR?_asmfunc1?ASM1
 USING 0
_asmfunc1:
;---- Variable ’arg?00’ assigned to Register ’R6/R7’ ----
 MOV A,R7 ; load LSB of the int
 ADD A,#01H ; add 1
 MOV R7,A ; put it back into R7
 CLR A
 ADDC A,R6 ; add carry & R6
 MOV R6,A

?C0001:
 RET ; return result in R6/R7

You may use the #pragma asm and #pragma endasm preprocessor directives
to insert assembly instructions into your C source code.

Interfacing to PL/M-51

Intel’s PL/M-51 is a popular programming language that is similar to C in many
ways. You can easily interface routines written in C to routines written in PL/M-
51. You can access PL/M-51 functions from C by declaring them with the alien
function type specifier. All public variables declared in the PL/M-51 module are
available to your C programs. For example:

extern alien char plm_func (int, char);

Since the PL/M-51 compiler and the Keil Software tools all generate object files
in the OMF51 format, external symbols are resolved by the linker.

32 Chapter 4. 8051 Development Tools

Code Optimizations

The C51 compiler is an aggressive optimizing compiler. This means that the
compiler takes certain steps to ensure that the code generated and output to the
object file is the most efficient (smaller and/or faster) code possible. The
compiler analyzes the generated code to produce the most efficient instruction
sequences. This ensures that your C program runs as quickly and effectively as
possible in the least amount of code space.

The C51 compiler provides six different levels of optimizing. Each increasing
level includes the optimizations of levels below it. The following is a list of all
optimizations currently performed by the C51 compiler.

General Optimizations

n Constant Folding: Several constant values occurring in an expression or
address calculation are combined as a single constant.

n Jump Optimizing: Jumps are inverted or extended to the final target address
when the program efficiency is thereby increased.

n Dead Code Elimination: Code which cannot be reached (dead code) is
removed from the program.

n Register Variables: Automatic variables and function arguments are located
in registers whenever possible. No data memory space is reserved for these
variables.

n Parameter Passing Via Registers: A maximum of three function arguments
can be passed in registers.

n Global Common Subexpression Elimination: Identical subexpressions or
address calculations that occur multiple times in a function are recognized
and calculated only once whenever possible.

Keil Software 8051 Demo Kit 33

8051-Specific Optimizations

n Peephole Optimization: Complex operations are replaced by simplified
operations when memory space or execution time can be saved as a result.

n Access Optimizing: Constants and variables are computed and included
directly in operations.

n Data Overlaying: Data and bit segments of functions are identified as
OVERLAYABLE and are overlaid with other data and bit segments by the
BL51 code banking linker/locator.

n Case/Switch Optimizing: Depending upon their number, sequence, and
location, switch and case statements can be further optimized by using a
jump table or string of jumps.

Options for Code Generation

n OPTIMIZE(SIZE): Common C operations are replaced by subprograms.
Program code size is reduced at the expense of program speed.

n OPTIMIZE(SPEED): Common C operations are expanded in-line.
Program speed is increased at the expense of code size.

n NOAREGS: The C51 compiler no longer uses absolute register access.
Program code is independent of the register bank.

n NOREGPARMS: Parameter passing is always performed in local data
segments rather then dedicated registers. Program code created with this
#pragma is compatible to earlier versions of the C51 compiler, the PL/M-51
compiler, and the ASM-51 assembler.

34 Chapter 4. 8051 Development Tools

Global Register Optimization

The C51 compiler provides support for application wide register optimization
which is also known as application register coloring. The following sample
program compares the code generated by C51 version 5.0 using application
register coloring to the code generated by C51 version 3.4 without application
register coloring. With the application wide register optimization, the C
compiler knows the registers used by external functions. Registers that are not
altered in external functions are used for register variables. The generated code
needs less data and code space and executes faster. In the following example
input and output are external functions, which require only a few registers.

With Global Register Optimization Without Global Register Optimization

 main () {
 unsigned char i;
 unsigned char a;
 while (1) {
 i = input (); /* get number of values */

 ?C0001:
 LCALL input
 ;- ’i’ assigned to ’R6’ -
 MOV R6,AR7

 ?C0001:
 LCALL input
 MOV DPTR,#i
 MOV A,R7
 MOV @DPTR,A

 do {
 a = input (); /* get input value */

 ?C0005:
 LCALL input
 ;- ’a’ assigned to ’R7’ -
 MOV R5,AR7

?C0005:
 LCALL input
 MOV DPTR,#a
 MOV A,R7
 MOVX @DPTR,A

 output (a); /* output value */

 LCALL _output LCALL _output

 } while (--i); /* decrement values */

 DJNZ R6,?C0005 MOV DPTR,#i
 MOVX A,@DPTR
 DEC A
 MOVX @DPTR,A
 JNZ ?C0005

 }

 SJMP ?C0001 SJMP ?C0001

 }

 RET RET

Code Size: 18 Bytes Code Size: 30 Bytes

Keil Software 8051 Demo Kit 35

Debugging

The C51 compiler uses the Intel Object Format (OMF51) for object files and
generates complete symbol information. Additionally, the compiler can include
all the necessary information such as; variable names, function names, line
numbers, and so on to allow detailed and thorough debugging and analysis with
dScope-51 or Intel compatible emulators. All Intel compatible emulators may be
used for program debugging. In addition, the OBJECTEXTEND control
directive embeds additional variable type information in the object file which
allows type-specific display of variables and structures when using certain
emulators. You should check with your emulator vendor to determine if it is
compatible with the Intel OMF51 object module format and if it can accept Keil
object modules.

36 Chapter 4. 8051 Development Tools

Library Routines

The C51 compiler includes seven different ANSI compile-time libraries which
are optimized for various functional requirements.

Library File Description

C51S.LIB Small model library without floating-point arithmetic

C51FPS.LIB Small model floating-point arithmetic library

C51C.LIB Compact model library without floating-point arithmetic

C51FPC.LIB Compact model floating-point arithmetic library

C51L.LIB Large model library without floating-point arithmetic

C51FPL.LIB Large model floating-point arithmetic library

80C751.LIB Library for use with the Philips 8xC751 and derivatives.

Source code is provided for library modules that perform hardware-related I/O
and is found in the \C51\LIB directory. You may use these source files to help
you quickly adapt the library to perform I/O using any I/O device in your target.

Intrinsic Library Routines

The libraries included with the compiler include a number of routines that are
implemented as intrinsic functions. Non-intrinsic functions generate ACALL or
LCALL instructions to perform the library routine. Intrinsic functions generate
in-line code (which is faster and more efficient) to perform the library routine.

Intrinsic Function Description

crol Rotate character left.

cror Rotate character right.

irol Rotate integer left.

iror Rotate integer right.

lrol Rotate long integer left.

lror Rotate long integer right.

nop No operation (8051 NOP instruction).

testbit Test and clear bit (8051 JBC instruction).

Listing File Example

The C51 compiler produces a listing file that contains source code, directive
information, an assembly listing, and a symbol table.

Keil Software 8051 Demo Kit 37

C51 COMPILER V5.02, SAMPLE 07/01/95 08:00:00 PAGE 1

DOS C51 COMPILER V5.02, COMPILATION OF MODULE SAMPLE
OBJECT MODULE PLACED IN SAMPLE.OBJ
COMPILER INVOKED BY: C:\C51\BIN\C51.EXE SAMPLE.C CODE

stmt level source
 1 #include <reg51.h> /* SFR definitions for 8051 */
 2 #include <stdio.h> /* standard i/o definitions */
 3 #include <ctype.h> /* defs for char conversion */
 4
 5 #define EOT 0x1A /* Control+Z signals EOT */
 6
 7 void main (void) {
 8 1 unsigned char c;
 9 1
 10 1 /* setup serial port hdw (2400 Baud @12 MHz) */
 11 1 SCON = 0x52; /* SCON */
 12 1 TMOD = 0x20; /* TMOD */
 13 1 TCON = 0x69; /* TCON */
 14 1 TH1 = 0xF3; /* TH1 */
 15 1
 16 1 while ((c = getchar ()) != EOF) {
 17 2 putchar (toupper (c));
 18 2 }
 19 1 P0 = 0; /* clear Output Port to signal ready */
 20 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)
 ; SOURCE LINE # 7
 ; SOURCE LINE # 11
0000 759852 MOV SCON,#052H
 ; SOURCE LINE # 12
0003 758920 MOV TMOD,#020H
 ; SOURCE LINE # 13
0006 758869 MOV TCON,#069H
 ; SOURCE LINE # 14
0009 758DF3 MOV TH1,#0F3H
000C ?C0001:
 ; SOURCE LINE # 16
000C 120000 E LCALL getchar
000F 8F00 R MOV c,R7
0011 EF MOV A,R7
0012 F4 CPL A
0013 6008 JZ ?C0002
 ; SOURCE LINE # 17
0015 120000 E LCALL _toupper
0018 120000 E LCALL _putchar
 ; SOURCE LINE # 18
001B 80EF SJMP ?C0001
001D ?C0002:
 ; SOURCE LINE # 19
001D E4 CLR A
001E F580 MOV P0,A
 ; SOURCE LINE # 20
0020 22 RET
 ; FUNCTION main (END)

MODULE INFORMATION: STATIC OVERLAYABLE
 CODE SIZE = 33 ----
 CONSTANT SIZE = ---- ----
 XDATA SIZE = ---- ----
 PDATA SIZE = ---- ----
 DATA SIZE = ---- 1
 IDATA SIZE = ---- ----
 BIT SIZE = ---- ----
END OF MODULE INFORMATION.

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

The C51 compiler produces a
listing file with page numbers
as well as time and date of
the compilation. Remarks
about the compiler invocation
and object file output are
displayed in this listing.

The listing includes a line
number for each statement
and a nesting level for each
block enclosed within curly
braces (‘{‘ and ‘}’).

Error messages and
warning messages are
included in the listing file.

The CODE compiler option
includes an assembly code
listing in the listing file.
Source line numbers are
embedded within the
generated code.

A memory overview provides
information about the 8051
memory areas that are used.

The total number of errors
and warnings is stated at
the end of the listing file.

38 Chapter 4. 8051 Development Tools

A51 Macro Assembler
The A51 assembler is a macro assembler for the 8051 microcontroller family. It
translates symbolic assembly language mnemonics into relocatable object code
where the utmost speed, small code size, and hardware control are critical. The
macro facility speeds development and conserves maintenance time since
common sequences need only be developed once. The A51 assembler supports
symbolic access to all features of the 8051 architecture and is configurable for
the numerous 8051 derivatives.

Functional Overview

The A51 assembler translates an assembler source file into a relocatable object
module. If the DEBUG control is used, the object file contains full symbolic
information for debugging with dScope or an in-circuit emulator. In addition to
the object file, the A51 assembler generates a list file which may optionally
include symbol table and cross reference information. The A51 assembler is
fully compatible with Intel ASM-51 source modules.

Configuration

The A51 assembler supports all members of the 8051 family. The special
function register (SFR) set of the 8051 is predefined. However, the NOMOD51
control lets you override these definitions with processor-specific include files.
The A51 assembler is shipped with include files for the 8051, 8051Fx, 8051GB,
8052, 80152, 80451, 80452, 80515, 80C517, 80C515A, 80C517A, 8x552,
8xC592, 8xCL781, 8xCL410 and 80C320 microcontrollers. You can easily
create include files for other 8051 family members.

Keil Software 8051 Demo Kit 39

Listing File Example

The following example shows a listing file generated by the A51 assembler
during assembly. The listing file contains source code, machine code generated,
directive information, and a symbol table.

A51 MACRO ASSEMBLER Test Program 07/01/95 08:00:00 PAGE 1

DOS MACRO ASSEMBLER A51 V5.02
OBJECT MODULE PLACED IN SAMPLE.OBJ
ASSEMBLER INVOKED BY: C:\C51\BIN\A51.EXE SAMPLE.A51 XREF

LOC OBJ LINE SOURCE
 1 $TITLE (’Test Program’)
 2 NAME SAMPLE
 3
 4 EXTRN CODE (PUT_CRLF, PUTSTRING, InitSerial)
 5 PUBLIC TXTBIT
 6
 7 PROG SEGMENT CODE
 8 CONST SEGMENT CODE
 9 BITVAR SEGMENT BIT
 10
---- 11 CSEG AT 0
 12
0000 020000 F 13 Reset: JMP Start
 14
---- 15 RSEG PROG
 16 ; *****
0000 120000 F 17 Start: CALL InitSerial ;Init Serial Interface
 18
 19 ; This is the main program. It is an endless
 20 ; loop which displays a text on the console.
0003 C200 F 21 CLR TXTBIT ; read from CODE
0005 900000 F 22 Repeat: MOV DPTR,#TXT
0008 120000 F 23 CALL PUTSTRING
000B 120000 F 24 CALL PUT_CRLF
000E 80F5 25 SJMP Repeat
 26 ;
---- 27 RSEG CONST
0000 54455354 28 TXT: DB ’TEST PROGRAM’,00H
0004 2050524F
0008 4752414D
000C 00
 29
 30
 31
---- 32 RSEG BITVAR ; TXTBIT=0 read from CODE
0000 33 TXTBIT: DBIT 1 ; TXTBIT=1 read from XDATA
 34
 35 END

XREF SYMBOL TABLE LISTING
---- ------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES / REFERENCES

BITVAR B SEG 0001H REL=UNIT 9# 32
CONST. C SEG 000DH REL=UNIT 8# 27
INITSERIAL C ADDR ----- EXT 4# 17
PROG C SEG 0010H REL=UNIT 7# 15
PUTSTRING. C ADDR ----- EXT 4# 23
PUT_CRLF C ADDR ----- EXT 4# 24
REPEAT C ADDR 0005H R SEG=PROG 22# 25
RESET. C ADDR 0000H A 13#
SAMPLE N NUMB ----- 2
START. C ADDR 0000H R SEG=PROG 13 17#
TXT. C ADDR 0000H R SEG=CONST 22 28#
TXTBIT B ADDR 0000H.0 R SEG=BITVAR 5 5 21 33#

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

The A51 assembler
produces a listing file with
page numbers as well as
the time and date of the
assembly. Remarks about
the assembler invocation
and the object file output
are displayed in this listing.

Typical programs start with
EXTERN, PUBLIC, and
SEGMENT directives.

The listing file includes a
line number for each
source line.

If a source line generates
code, the HEX values are
displayed at the beginning
of the line.

Error messages and
warning messages are
included in the listing file.
The position of each error
is clearly marked.

The XREF assembler
option produces a cross
reference list. The cross
reference report shows all
symbols and the line
numbers in which they are
used. The line number
where the symbol is
defined is marked with a
pound symbol (‘#’).

The register banks used,
and the total number of
warnings and errors is
stated at the end of the
listing file.

40 Chapter 4. 8051 Development Tools

BL51 Code Banking Linker/Locator
The BL51 code banking linker/locator combines one or more object modules
into a single executable 8051 program. The linker also resolves external and
public references, and assigns absolute addresses to relocatable programs
segments.

The BL51 code banking linker/locator processes object modules created by the
Keil C51 compiler and A51 assembler and the Intel PL/M-51 compiler and
ASM-51 assembler. The linker automatically selects the appropriate run-time
library and links only the library modules that are required.

Normally, you invoke the BL51 code banking linker/locator from the command
line specifying the names of the object modules to combine. The default
controls for the BL51 code banking linker/locator have been carefully chosen to
accommodate most applications without the need to specify additional directives.
However, it is easy for you to specify custom settings for your application.

Data Address Management

The BL51 code banking linker/locator manages the limited internal memory of
the 8051 by overlaying variables for functions that are mutually exclusive. This
greatly reduces the overall memory requirement of most 8051 applications.

The BL51 code banking linker/locator analyzes the references between functions
to carry out memory overlaying. You may use the OVERLAY directive to
manually control functions references the linker uses to determine exclusive
memory areas. The NOOVERLAY directive lets you completely disable
memory overlaying. These directives are useful when using indirectly called
functions or when disabling overlaying for debugging.

Keil Software 8051 Demo Kit 41

Code Banking

The BL51 code banking linker/locator supports the ability to create application
programs that are larger than 64 Kbytes. Since the 8051 does not directly
support more than 64 Kbytes of code address space, there must be external
hardware that swaps code banks. The hardware that does this must be controlled
by software running on the 8051. This process is known as bank switching.

The BL51 code banking linker/locator lets you manage 1 common area and 32
banks of up to 64 Kbytes each for a total of 2 Mbytes of bank-switched 8051
program space. Software support for the external bank switching hardware
includes a short assembly file you can edit for your specific hardware platform.

The BL51 code banking linker/locator lets you specify the bank in which to
locate a particular program module. By carefully grouping functions in the
different banks, you can create very large, efficient applications.

Common Area

The common area in a bank switching program is an area of memory that can be
accessed at all times from all banks. The common area cannot be physically
swapped out or moved around. The code in the common area is either duplicated
in each bank (if the entire program area is swapped) or can be located in a
separate area or EPROM (if the common area is not swapped).

The common area contains program sections and constants which must be
available at all times. It may also contain frequently used code. By default, the
following code sections are automatically located in the common area:

n Reset and Interrupt Vectors,

n Code Constants,

n C51 Interrupt Functions,

n Bank Switch Jump Table,

n Some C51 Run-Time Library Functions.

42 Chapter 4. 8051 Development Tools

Executing Functions in Other Banks

Code banks are selected by additional software-controlled address lines that are
simulated using 8051 port I/O lines or a memory-mapped latch. The BL51 code
banking linker/locator generates a jump table for functions in other code banks.
When you call a function in a different bank, your program switches the bank,
jumps to the desired function, and, when the function completes, restores the
previous bank), and returns execution to the calling routine.

The bank switching process requires approximately 50 CPU cycles and
consumes an additional 2 bytes of stack space. You can dramatically improve
system performance by grouping interdependent functions in the same bank.
Functions which are frequently invoked from multiple banks should be located in
the common area.

Keil Software 8051 Demo Kit 43

Listing File Example

The following example shows a map file created by the BL51 code banking
linker/locator:

BL51 BANKED LINKER/LOCATER V3.52 07/01/95 08:00:00 PAGE 1

MS-DOS BL51 BANKED LINKER/LOCATER V3.52, INVOKED BY:
C:\C51\BIN\BL51.EXE SAMPLE.OBJ

MEMORY MODEL: SMALL

INPUT MODULES INCLUDED:
 SAMPLE.OBJ (SAMPLE)
 C:\C51\LIB\C51S.LIB (?C_STARTUP)
 C:\C51\LIB\C51S.LIB (PUTCHAR)
 C:\C51\LIB\C51S.LIB (GETCHAR)
 C:\C51\LIB\C51S.LIB (TOUPPER)
 C:\C51\LIB\C51S.LIB (_GETKEY)

LINK MAP OF MODULE: SAMPLE (SAMPLE)

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 * * * * * * * D A T A M E M O R Y * * * * * * *
 REG 0000H 0008H ABSOLUTE "REG BANK 0"
 DATA 0008H 0001H UNIT ?DT?GETCHAR
 DATA 0009H 0001H UNIT _DATA_GROUP_
 000AH 0016H *** GAP ***
 BIT 0020H.0 0000H.1 UNIT ?BI?GETCHAR
 0020H.1 0000H.7 *** GAP ***
 IDATA 0021H 0001H UNIT ?STACK

 * * * * * * * C O D E M E M O R Y * * * * * * *
 CODE 0000H 0003H ABSOLUTE
 CODE 0003H 0021H UNIT ?PR?MAIN?SAMPLE
 CODE 0024H 000CH UNIT ?C_C51STARTUP
 CODE 0030H 0027H UNIT ?PR?PUTCHAR?PUTCHAR
 CODE 0057H 0011H UNIT ?PR?GETCHAR?GETCHAR
 CODE 0068H 0018H UNIT ?PR?_TOUPPER?TOUPPER
 CODE 0080H 000AH UNIT ?PR?_GETKEY?_GETKEY

OVERLAY MAP OF MODULE: SAMPLE (SAMPLE)

SEGMENT DATA_GROUP
 +--> CALLED SEGMENT START LENGTH
--
?C_C51STARTUP ----- -----
 +--> ?PR?MAIN?SAMPLE

?PR?MAIN?SAMPLE 0009H 0001H
 +--> ?PR?GETCHAR?GETCHAR
 +--> ?PR?_TOUPPER?TOUPPER
 +--> ?PR?PUTCHAR?PUTCHAR

?PR?GETCHAR?GETCHAR ----- -----
 +--> ?PR?_GETKEY?_GETKEY
 +--> ?PR?PUTCHAR?PUTCHAR

LINK/LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)

The BL51 code banking
linker/locator produces a map
file with the time and date of
the link/locate run.

The invocation line and the
selected memory module are
listed.

The link-map contains a table
of the memory usage of the
physical 8051 memory area.

The overlay-map displays the
structure of the program and
the location of the bit and data
segments of each function.

Error messages and warnings
are listed at the end of the
map file. These messages
indicate possible problems
during the link/locate run.

44 Chapter 4. 8051 Development Tools

OC51 Banked Object File Converter
The OC51 banked object file converter creates absolute object modules for each
code bank in a banked object module. Banked object modules are created by the
BL51 code banking linker/locator when you create a bank switching application.
Symbolic debugging information is copied to the absolute object files and can be
used by dScope or an in-circuit emulator.

You may use the OC51 banked object file converter to create absolute object
modules for the command area and for each code bank in your banked object
module. You may then generate Intel HEX files for each of the absolute object
modules using the OH51 object-hex converter.

OH51 Object-Hex Converter
The OH51 object-hex converter creates Intel HEX files from absolute object
modules. Absolute object modules can be created by the BL51 code banking
linker or by the OC51 banked object file converter. Intel HEX files are ASCII
files that contain a hexadecimal representation of your application. They can be
easily loaded into a device programmer for writing EPROMS.

LIB51 Library Manager
The LIB51 library manager lets you create and maintain library files. A library
file is a formatted collection of one or more object files. Library files provide a
convenient method of combining and referencing a large number of object files.
Libraries can be effectively used by the BL51 code banking linker/locator.

The LIB51 library manager lets you create a library file, add object modules to a
library file, remove object modules from a library file, and list the contents of a
library file. The LIB51 library manager may be controlled interactively or from
the command line.

Keil Software 8051 Demo Kit 45

dScope-51 for Windows
dScope-51 is a source level debugger and simulator for programs created with
the Keil C51 compiler and A51 assembler and the Intel PL/M-51 compiler and
ASM-51 assembler. dScope-51 is a software-only product that lets you simulate
the features of an 8051 without actually having target hardware. You may use
dScope-51 to test and debug your embedded application before actual 8051
hardware is ready. dScope-51 simulates a wide variety of 8051 peripherals
including the internal serial port, external I/O, and timers.

Refer to “dScope Simulator/Debugger Overview” on page 55 for examples that
show how to use dScope-51.

µVision/51 for Windows
µVision/51 is an integrated software development platform that includes a full-
function editor, project manager, make facility, and environment control for the
Keil 8051 tools. When you use µVision/51, you no longer have to learn the
command-line syntax of any of the tools. µVision/51 speeds your embedded
application development by providing the following:

n Standard Windows user interface,

n Dialog boxes for all environment and development tool settings,

n Multiple file editing capability,

n Full-function editor with user-definable key sequences,

n Application manager for adding external programs into the pull-down menu,

n Project manager for creating and maintaining projects,

n Integrated make facility for building target programs from your projects,

n On-line help system.

Refer to “µVision IDE Overview” on page 48 for examples that show how to use
µVision/51.

46 Chapter 4. 8051 Development Tools

Keil Software 8051 Demo Kit 47

Chapter 5. Using the 8051 tools
To make it easy for you to evaluate and become familiar with our 8051 product
line, we provide an evaluation diskette with sample programs and limited
versions of our tools. The sample programs are also included with our standard
product kits.

This chapter introduces the primary user-interface products, µVision and
dScope, and shows you how to use them to compile, link, and run the provided
sample programs. The following sections are included in this chapter:

n Starting µVision and dScope,

n µVision integrated development environment overview,

n dScope simulator/debugger overview,

n Sample programs,

n Building and running the HELLO sample program,

n Building and running the MEASURE sample program,

n Building the BADCODE sample program.

The examples and descriptions in this chapter are illustrated using our Windows-
based tools. These are the same tools distributed with our
C51 Demo Kit and C51 Evaluation Kit. Contact sales/support if you would
like a copy of our DOS-based evaluation kit.

NOTE
The C51 Evaluation Kit includes evaluation versions of our 8051 tools. The
evaluation tools are limited in functionality and the code size of the application
you can create. Refer to the “Eval Kit Notes” for more information on the
limitations of the evaluation tools. For larger applications, you need to
purchase one of our development kits. Refer to “Chapter 3. 8051 Product
Line” on page 13 for a description of the kits that are available.

48 Chapter 5. Using the 8051 tools

Starting µVision and dScope
Both µVision for Windows and dScope for Windows are standard Windows
applications. You launch them by double-clicking on the appropriate icon in the
program group created by the installation program.

µVision IDE Overview
µVision is an integrated software development platform that combines a robust
editor, project manager, and make facility. µVision supports all of the Keil tools
for the 8051, 251, and 166. µVision helps expedite the development process of
your embedded applications by providing the following:

n Full-function editor with user-definable key sequences,

n Application manager for linking external program files into the pull-down
menu,

n Project manager for creating and maintaining your projects,

n Integrated make facility for assembling, compiling, and linking your
embedded applications,

n Dialog boxes for all environment and development tool settings.

Keil Software 8051 Demo Kit 49

About the Environment

In µVision, you may use the keyboard or the mouse to select menu commands,
settings, and options for the development tools. You may also use the keyboard
to enter program text.

The µVision screen provides you with a menu bar for command entry, a tool bar
where you can rapidly select command buttons, and one or more windows for
source files, dialog boxes, and information displays.

Menu bar

Tool bar

Source window

Status bar Horizontal
scroll bar

Vertical
scroll bar

50 Chapter 5. Using the 8051 tools

You can quickly access many of the features of µVision using the buttons on the
tool bar.

µVision lets you simultaneously open and view multiple source files. While
writing part of your C program in one window, you can refer to header file
information in another window. You can move and resize source windows using
the mouse or keyboard.

Show occurrences

Color syntax highlighting

Tile vertically

Tile horizontally

Help

Paste text

Copy selected text

Cut selected text

New file

Open

Save

Print

Find

Repeat find

Compile

Update

Build all

Keil Software 8051 Demo Kit 51

Editor

µVision’s built-in editor can be customized to emulate many popular text
editors. You can change key assignments for almost all editor functions. The
following table lists a few of the editor functions that are available:

Beginning of File
Beginning of Line
Beginning of Page
Cascade Windows
Close File
Copy to Clipboard
Cursor Down
Cursor Left
Cursor Right
Cursor Up
Cut to Clipboard
Delete
Delete Line
Delete to End of Line

Destructive Backspace
End of File
End of Line
End of Page
Exclusive Mark
Forward Quick Search
Forward Replace
Full Search
Insert Template
Mark Block
Mark Columns
Mark Lines
Move/Resize Window
New File

Next Error
Open File
Page Down
Page Up
Paste from Clipboard
Previous Error
Previous Window
Print File
Repeat Last Search
Reverse Quick Search
Undo
Word Left
Word Right

52 Chapter 5. Using the 8051 tools

Menu Commands

Through pull-down menus on the menu bar and editor commands, you control
the µVision operations. You may use either the mouse or the keyboard to access
commands from the menu bar.

The menu bar provides you with access to menus for file operations, editor
operations, project maintenance, external program execution (such as running
the dScope debugger/simulator or another program), development tool option
settings, window selection and manipulation, and on-line help.

Keil Software 8051 Demo Kit 53

Development Tool Options

µVision lets you set options for software development tools such as the C51
compiler and A51 assembler. Simply select the appropriate item from the
Options menu and use the mouse or the keyboard to change the options.

54 Chapter 5. Using the 8051 tools

Project Manager

Most embedded programs are composed of several source files. This means that
a project includes a large collection of individual files. Some files may require
compilation with the C51 compiler, some files may require assembly, and some
files may require custom translation in order to create a target program.

To accommodate the intricacies of project maintenance, µVision includes a
project manager facility. The project manager gives you a method of creating
and maintaining a project so that the target program is always up-to-date. The
project manager can easily handle file-to-file dependencies, including file
nesting, as well as the exact sequence of operations required to build the target.

Use the project manager dialog box to define the source files that make up the
project; use the make commands from the Project menu to compile source files
and to generate the target; then, use the simulator and emulator commands from
the Run menu to execute, test, and debug your application.

All aspects of a project are saved in a project file. The project file includes: the
source files that make up the target program; the compiler, assembler, and linker
command line options; the debugger and simulator options; and the make facility
options.

Keil Software 8051 Demo Kit 55

dScope Simulator/Debugger Overview
dScope is a source level debugger/simulator for the entire Keil Software product
line. You can use dScope to debug the applications you develop using the C51
and C251 compilers and A51 and A251 assemblers. In addition, dScope lets you
debug application written using the Intel PL/M-51 compiler and the ASM-51
assembler.

dScope is a software-only product that simulates most of the features of 8051
microcontroller without actually having target hardware. You can use dScope to
test and debug your embedded application before the hardware is ready. dScope
simulates a wide variety of 8051 peripherals including the serial port, external
I/O, and timers. Support for the various microcontroller derivatives is provided
through the use of dynamic link libraries (DLLs).

In addition to simulating the CPU, dScope interfaces directly to the 8051
monitor program MON51.

Register
window

Serial
window

Command
window

Menu bar

Tool bar

Debug
window

56 Chapter 5. Using the 8051 tools

About the Debugger

In dScope, you may use the keyboard or the mouse to select menu commands,
step through your application, and select debugging options. The dScope screen,
pictured above, provides you with a menu bar for command entry, a tool bar
where you can rapidly select command buttons, and several windows for
displaying registers, memory contents, serial I/O, and commands. You can
quickly display and hide the windows shown above with the buttons on the tool
bar.

Help

Reset

Toolbox window

Code coverage
window

Call stack window

Open object file

CPU driver

Command window

Debug window

Register window

Serial window

Symbol browser
window

Memory window

Performance
analyzer window

Watch window

Keil Software 8051 Demo Kit 57

CPU Simulation

dScope simulates virtually every derivative of the 8051 microcontroller. Support
for each CPU is provided through the use of DLLs. Before you load your target
application, you must select the appropriate CPU driver from the CPU driver
drop-down box on the tool bar. You may also select the Load CPU driver
command from the File menu. The following CPU drivers are included with
dScope.

CPU Driver DLLs Supported Derivatives

80320.DLL Dallas Semiconductor 80C320, 80C520, and 80C530.

8051.DLL 8051, 8031, 80C51, and 80C51

80515.DLL 80C515 and 80C535

80515A.DLL 80C515A and 80C535A

80517.DLL 80C517 and 80C537

80517A.DLL 80C517A and 80C537A

8051FX.DLL 8051FA, 8051FB, and 8051FC

8052.DLL 8052, 8032, 80C52, and 80C32

80552.DLL 8xC552

80751.DLL 8xC750, 8xC751, and 8xC752

80410.DLL 8xCL410

80781.DLL 8xCL781

dScope simulates up to 16 Mbytes of memory from which areas can be mapped
for read, write, or code execution access. dScope traps and reports illegal
memory accesses.

In addition to memory mapping, dScope also provides
support for the integrated peripherals of the various
8051 derivatives. The CPU’s on-chip peripherals are
supported by the CPU driver in the DLL.

You can select and display the on-chip peripheral
components using the Peripherals menu. You can also
change the aspects of each peripheral using the controls
in the dialog boxes.

58 Chapter 5. Using the 8051 tools

The Debug Window

After you have loaded the appropriate CPU driver, you are ready to load your
target program. You can use the button on the tool bar to open your object file,
or you can use the Load object file command from the File menu.

Once your application is loaded, the dScope debug window displays your C,
assembly, or PL/M-51 source text.

Three display formats are available from the Command menu in the debug
window. They are:

n View High Level. This display format shows your original source text
exactly as it appears in your source files.

n View Mixed. This display format shows your original source text mixed
with the assembly code generated by the compiler or assembler.

n View Assembly. This display format shows only the assembly code
generated for your source.

In addition to target program, the debug window can display a trace history of up
to 512 previously executed instructions. To enable the trace history, select the
Record Trace command from the Command menu in the debug window.

Keil Software 8051 Demo Kit 59

Command Window

You interact with dScope by entering commands from the keyboard and
selecting options with the mouse. You can enter nearly all dScope commands in
the command window. dScope responds to the commands you enter at the
command prompt (‘>’).

You can interactively display and change variables, registers, and memory
locations from the command window. You can also enter assembly code to
patch or test parts of your program.

For example, you can type the following text commands at the command prompt:

Text Effect

DPTR Display the DPTR register.

R7 = 12 Assign the value 12 to register R7.

time.hour Displays the hour member of the time structure.

time.hour++ Increments the hour member of the time structure.

index = 0 Assigns the value 0 to index.

You are not limited to using the command window to control dScope. You can
also use the mouse to select pull-down menus from the menu bar and invoke
commands from the tool bar.

60 Chapter 5. Using the 8051 tools

Serial Window

dScope provides a serial window for serial input and output. Serial data output
from the simulated CPU is displayed in this window. Characters you type in this
window are input to the simulated CPU.

This lets you simulate the CPU’s UART without the need for external hardware.

Watch Window

You can use the watch window to interactively display variables and complex
structures. This is useful when you want to see the effects or your program on a
buffer or data structure.

Not only can you watch the variables in your program, you can also change them
using standard C expressions you enter at the command prompt in the command
window.

Keil Software 8051 Demo Kit 61

Performance Analyzer Window

dScope has a built-in performance analyzer that lets you record timing statistics
for functions and program blocks. Performance analysis results are displayed in
the performance analyzer window.

The performance analyzer window shows the name of each function or memory
range of each block along with a bar graph showing the percentage of time spent
in that function or block. You may select a function to view statistics in the
bottom portion of the performance analyzer window. The following statistics are
maintained for each function or program block:

n min time Minimum time spent in the function or block,

n max time Maximum time spent in the function or block,

n avg time Average amount time spent in the function or block,

n total time Total time spent in the function or block,

n count Number of times the function or block was entered.

62 Chapter 5. Using the 8051 tools

Other Features

In addition to the features described above, dScope offers numerous other
functions that provide a robust debugging environment.

Functions

A powerful feature of dScope is its ability to let you define and use C-like
functions for a wide variety of applications. For example, you can create dScope
functions to manipulate the on-chip peripherals, extend the command set of
dScope, and generate digital and analog input to hardware ports. There are three
types of functions available to dScope:

n User Functions extend the command scope of the debugger,

n Signal Functions generate input to the 8051 peripherals,

n Built-in Functions provide convenient utility routines (like printf and
memset) that you can use in user or signal functions.

Refer to “Signal Functions” on page 83 for an example of how to use functions
in dScope.

Breakpoints

It is easy to set breakpoints on high-level statements, assembler instructions, and
conditional expressions. Simply move the mouse pointer to the line or
instruction and double-click. You can even set a breakpoint based on the type of
memory access type or repetition factor. When dScope reaches a breakpoint, it
can perform a wide range of operations-from simple probing to running macro
functions.

Keil Software 8051 Demo Kit 63

Code Coverage

dScope provides a code coverage function which marks the lines of code that
have been executed. In the debug window, lines of code which have been
executed are market with a plus sign (‘+’) in the left column.

You can use this feature when you test your embedded application to determine
the sections of code that have not yet been exercised. The Code Coverage dialog
box also provides useful information and code coverage statistics.

64 Chapter 5. Using the 8051 tools

Sample Programs
This section describes the sample programs that are included in our evaluation
kits and product kits. The sample programs are ready for you to run. You can
use the sample programs to learn how to use our tools. Additionally, you can
copy the code from our samples for your own use.

The sample programs are found in the \C51\EXAMPLES\ directory. Each sample
program is stored in a separate subdirectory along with project files and batch
files that help you quickly build and evaluate each sample program.

The following table lists the sample programs and their directories.

Directory Description

\A51\ A51 is a sample program for the A51 assembler.

\BADCODE\ BADCODE is a sample program with a number of syntax errors. Use µVision
to open the BADCODE.PRJ project file and compile. µVision takes you to
each error in BADCODE.C. Refer to “BADCODE: An Example with Syntax
Errors” on page 89 for more information about this sample program.

\BL51_EX1\ BL51_EX1 demonstrates a bank switching application written in C. This
sample program invokes functions in different code banks. Build this program
using the BL51_EX1.PRJ project file.

\BL51_EX2\ BL51_EX2 demonstrates a C program that has constant messages stored in
different code banks. Build this program using the BL51_EX2.PRJ project file.

\BL51_EX3\ BL51_EX3 demonstrates a bank switching program that has only one module
with functions located in different banks. Build this program using the
BL51_EX3.PRJ project file.

\BL51_EX4\ BL51_EX4 demonstrates a bank switching, Intel PL/M-51 program that calls
functions in different code banks. This program is the PL/M-51 equivalent to
BL51_EX1. Build this program using the BL51_EX4.PRJ project file. The
Intel PL/M-51 compiler is required.

\CSAMPLE\ The CSAMPLE sample program demonstrates a simple addition and
subtraction calculator. This sample program is a multiple module project that
you can build using the CSAMPLE.PRJ project file.

\DHRY\ The DHRY example is a DHRYSTONE benchmark program that calculates
and displays the dhrystones per second for the host CPU. This example is
mainly provided for benchmark enthusiasts. Build this program using the
DHRY.PRJ project file.

\FIB\ The FIB sample program generates fibonacci numbers and shows you how to
use the reentrant function attribute to declare recursive functions. Build this
sample program using the FIB.PRJ project file.

\HELLO\ The HELLO sample program is the embedded 8051 C Hello World program.
Use the HELLO.PRJ project file to build this program. Refer to “HELLO: Your
First 8051 C Program” on page 66 for more information about this sample
program.

\LSIEVE\ LSIEVE demonstrates the large model version of the sieve of Eratosthenes
prime number generator. This example is mainly provided for benchmark
enthusiasts. Build this program using the LSIEVE.PRJ project file.

Keil Software 8051 Demo Kit 65

Directory Description

\MEASURE\ The MEASURE sample C program collects analog and digital data. It
simulates a data acquisition system that might be found in a weather station or
in a process control application. Build this program using the MEASURE.PRJ
project file. Refer to “MEASURE: A Remote Measurement System” on page
73 for more information about this sample program.

\RTX_EX1\ The RTX_EX1 sample program demonstrates round-robin multitasking using
RTX-51 Tiny. Build this program using the RTX_EX1.PRJ project file.

\RTX_EX2\ The RTX_EX2 sample program demonstrates an RTX-51 Tiny application that
uses signals. Build this program using the RTX_EX2.PRJ project file.

\SAMPL517\ The SAMPL517 sample program provides an RPN-style calculator that takes
advantage of the 80C517 arithmetic processor. Build this program using the
SAMPL517.PRJ project file.

\SSIEVE\ The SSIEVE sample program demonstrates the small model version of the
sieve of Eratosthenes prime number generator. This example is mainly
provided for benchmark enthusiasts. Build this program using the
SSIEVE.PRJ project file.

\TDP\ The TDP sample program demonstrates how to use interrupt-driven serial I/O
to interface to an alarm clock driven by an interrupt-driven timer. Build this
program using the TDP.PRJ project file.

\TRAFFIC\ The TRAFFIC sample program shows how to control a traffic light using the
RTX-51 Tiny real-time executive. Build this program using the TRAFFIC.PRJ
project file.

\WHETS\ The WHETS example is a WHETSTONE benchmark program that calculates
and displays the number whetstones per second for the host CPU. This
example is mainly provided for benchmark enthusiasts. Build this program
using the WHETS.PRJ project file.

To begin using one of the sample files, you must switch to the directory in which
the sample resides. Then, you may use either the provided DOS batch files or
the µVision for Windows project file to build and test the sample program.

The following sections in this chapter describe how to use the tools to build the
following sample programs:

n HELLO: Your First C51 Program

n MEASURE: A Remote Measurement System

n BADCODE: An Example with Syntax Errors

66 Chapter 5. Using the 8051 tools

HELLO: Your First 8051 C Program
The HELLO sample program is located in the \C51\EXAMPLES\HELLO\ directory.
HELLO does nothing more than print the text “Hello World” to the serial port.
The entire program is contained in a single source file, HELLO.C, which is listed
below.

/*--
HELLO.C

Copyright 1995 KEIL Software, Inc.
--*/

#pragma DEBUG OBJECTEXTEND CODE /* pragma lines can contain */
 /* command line directives */

#include <reg51.h> /* special function register declarations */
 /* for the intended 8051 derivative */

#include <stdio.h> /* prototype declarations for I/O functions */

/****************/
/* main program */
/****************/
void main (void) { /* execution starts here after stack init */
 SCON = 0x50; /* SCON: mode 1, 8-bit UART, enable rcvr */
 TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload */
 TH1 = 0xf3; /* TH1: reload value for 2400 baud */
 TR1 = 1; /* TR1: timer 1 run */
 TI = 1; /* TI: set TI to send first char of UART */

 printf ("Hello World\n"); /* the ’printf’ function call */

 while (1) { /* An embedded program does not stop and */
 ; /* ... */ /* never returns. We’ve used an endless */
 } /* loop. You may wish to put in your own */
} /* code were we’ve printed the dots (...). */

This small application helps you confirm that you can compile, link, and debug
an application. You can perform these operations from the DOS command line,
using batch files, or from µVision for Windows using the provided project file.

Hardware Requirements

The hardware for HELLO is based on the standard 8051CPU. The only on-chip
peripheral used is the serial port. You do not actually need a target CPU because
dScope lets you simulate the hardware required for this program.

Keil Software 8051 Demo Kit 67

HELLO Project File

In µVision, applications are maintained in a project file. The project file
contains names of all source files associated with the project and also tells the
tools how to compile, assemble, and link to generate an executable target
program.

A project file, called HELLO.PRJ, has been created for HELLO. To load this
project file, select the Open command from the Project menu and open the
HELLO.PRJ project file from the \C51\EXAMPLES\HELLO directory.

68 Chapter 5. Using the 8051 tools

Editing HELLO.C

You can now edit HELLO.C. Select the Open command from the File menu.
µVision prompts you with the Open File dialog box. Select HELLO.C from the
files list and select the OK button.

µVision loads and displays the contents of HELLO.C in a window.

Keil Software 8051 Demo Kit 69

Compiling and Linking HELLO

When you are ready to compile and link your project, click on the Build All
button on the tool bar or select the Make: Build Project command from the
Project menu. µVision begins to compile and link the source files in your
project and create an absolute object module that you can load into dScope for
testing. During the build, µVision displays the status in a window.

When the build is complete, µVision displays a message indicating the build is
finished.

You may press Esc at any time to halt the build.

NOTE
You should encounter no errors when you use µVision with the provided sample
projects. If µVision says it cannot find or run the compiler or linker, check your
PATH for the \C51\BIN directory. If it is not there, you must add it so that
µVision can find the compiler and the other tools. You can add the path
specifications in µVision when you select the Environment Pathspecs command
from the Options menu.

70 Chapter 5. Using the 8051 tools

Testing HELLO With dScope

Once the HELLO program is compiled and linked, you can test it with the
dScope debugger/simulator. In µVision, select the DS51 Simulator command
from the Run menu and press Enter when the dScope Command Arguments
dialog box displays.

µVision passes an initialization file (HELLO.INI) to dScope. This file contains
commands for dScope that load the CPU driver DLL and the HELLO sample
program.

When dScope loads, the following screen displays.

NOTE
The first time you invoke dScope, you may need to change the fonts and colors
used for the different windows. Select the Colors and Fonts command from the
Setup menu to configure the different windows in dScope.

Keil Software 8051 Demo Kit 71

Running HELLO

To run the HELLO program, click on the Go button in the debug window or
enter g at the command prompt. The HELLO program executes and displays
the text “Hello World” in the serial window.

After HELLO outputs “Hello World,” it begins executing an endless loop. To
halt execution, click on the Stop button in the debug window or type Ctrl+C.
After you have halted program execution, you may type exit to leave the
dScope debugger.

Single-Stepping Through HELLO

You can single-step through the HELLO program using the Step buttons in the
debug window.

First, make sure to reset the CPU driver. To do this, make sure program
simulation is halted, then type the following lines at the command prompt:

reset
g,main

72 Chapter 5. Using the 8051 tools

The reset command resets the simulated 8051 CPU. The g,main command
begins executing the program and stops when it reaches the main C function.

To step through the HELLO program, click on the StepOver button in the debug
window. Each time you click on this button, the simulator executes one
statement. The current instruction is always highlighted, but the highlight moves
each time you step. You may continue stepping through your program by
clicking on the StepOver button.

You may exit dScope at any time. To do so, halt execution of HELLO and enter
exit at the command prompt.

Keil Software 8051 Demo Kit 73

MEASURE: A Remote Measurement
System
The MEASURE sample program is located in the \C51\EXAMPLES\MEASURE\

directory. MEASURE runs a remote measurement system that collects analog
and digital data like a data acquisition systems found in a weather stations and
process control applications. MEASURE is composed of three source files:
GETLINE.C, MCOMMAND.C, and MEASURE.C.

MEASURE records data from two 8-bit digital ports and four 8-bit analog-to-
digital inputs. A timer controls the sample rate. The sample interval can be
configured from 1 millisecond to 60 minutes. Each measurement saves the
current time and all of the input channels to an 8 Kbyte RAM buffer.

Hardware Requirements

The hardware for MEASURE is based on the 80517 CPU. This microcontroller
provides analog and digital input capability. Port 4 and port 5 are used for the
digital inputs and AN0 through AN3 are used for the analog inputs. You do not
actually need a target CPU because dScope lets you simulate all the hardware
required for this program.

74 Chapter 5. Using the 8051 tools

MEASURE Project File

The project file for the MEASURE sample program is called MEASURE.PRJ. To
load this project file, select the Open command from the Project menu and open
MEASURE.PRJ from the \C51\EXAMPLES\MEASURE directory. Select the Edit
Project command from the Project menu to display the Project Manager dialog
box.

The Project Manager dialog box shows the source files that compose the
MEASURE project. There are three source files in this project.

MEASURE.C This source file contains the main C function for the
measurement system and the interrupt routine for timer 0.
The main function initializes all peripherals of the 80517 and
performs command processing for the system. The timer
interrupt routine, timer0, manages the real-time clock and the
measurement sampling of the system. Timer 0 was used to
maintain compatibility with the 8051 which can be used if
fewer input channels are required.

MCOMMAND.C This source file processes the display, time, and interval
commands. These functions are called from main. The
display command lists the analog values in floating-point
format to give a voltage between 0.00V and 5.00V.

GETLINE.C This source file contains the command-line editor for
characters received from the serial port.

To open a source file from the Project Manager dialog box, double-click on the
filename. To close the Project Manager dialog box, press Esc or click on the
Cancel button.

Keil Software 8051 Demo Kit 75

Compiling and Linking MEASURE

When you are ready to compile and link MEASURE, click on the Build All
button on the tool bar or select the Make: Build Project command from the
Project menu. µVision begins to compile and link the source files in MEASURE
and displays a message when the build is finished.

Once compiling and linking are complete, you are ready to begin testing the
MEASURE sample program.

76 Chapter 5. Using the 8051 tools

Testing MEASURE With dScope

The MEASURE sample program is designed to accept commands from the on-
chip serial port. If you have actual target hardware, you can use a host computer
or dumb terminal to communicate with the 80517 CPU. If you do not have
target hardware, you can use dScope to simulate the hardware. You can also use
the serial window in dScope to provide serial input.

Once the MEASURE program is compiled and linked, you can test it with
dScope. In µVision, select the DS51 Simulator command from the Run menu
and press Enter when the dScope Command Arguments dialog box displays.

The initialization file that µVision passes to dScope automatically loads the CPU
driver and MEASURE program. Once these are loaded, dScope displays the
following screen.

Keil Software 8051 Demo Kit 77

Remote Measurement System Commands

The serial commands that MEASURE supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must
be terminated with a carriage return.

Command Serial Text Description

Clear C Clears the measurement record buffer.

Display D Displays the current time and input values.

Time T hh:mm:ss Sets the current time in 24-hour format.

Interval I mm:ss.ttt Sets the interval time for the measurement samples. The
interval time must be between 0:00.001 (for 1ms) and
60:00.000 (for 60 minutes).

Start S Starts the measurement recording. After receiving the start
command, MEASURE samples all data inputs at the specified
interval.

Read R [count] Displays the recorded measurements. You may specify the
number of most recent samples to display with the read
command. If no count is specified, the read command
transmits all recorded measurements. You can read
measurements on the fly if the interval time is more than 1
second. Otherwise, the recording must be stopped.

Quit Q Quits the measurement recording.

Viewing Debug Symbols

The MEASURE sample program is configured for full debug information and
includes public and local symbols, line numbers, and high-level type
information. To view this information, click on the Symbol Browser button on
the tool bar to open the symbol browser window. Then, select the Locals radio
button and the Options check box as shown below.

dScope supports the drag and drop feature of Windows and lets you access the
symbols this way. Use the mouse to drag and drop the idx symbol from the
symbol browser window to the command window. The fully qualified symbol

78 Chapter 5. Using the 8051 tools

name with module name and function name are inserted as shown. The
qualifiers are separated by the backslash character (‘\’). Select the command
window and press Enter. dScope displays the value of idx.

You may filter the symbols displayed by selecting the memory space filter. If
you clear the data check box, all symbols in the data memory area are removed
from the display.

You can specify a search mask to limit the symbols displayed. To limit the
symbol list to those beginning with the letter I, enter “I*” and click the Apply
button.

Viewing Memory Contents

dScope displays memory in HEX and ASCII in the memory window. Open the
memory window by clicking on the Memory button on the tool bar. In the
command window, enter the address range you want to view, for example:

D X:0x0000, X:0xFFFF

Since the memory window cannot show the entire memory range at once, you
may use the scroll bars to scroll through the memory area. The bounds for
scrolling are defined by the address range specified, 0x0000 to 0xFFFF for this
example.

To display the on-chip data memory, enter the following in the command
window.

D I:0x0000, I:0xFF

dScope can dynamically update the memory window while your application is
running. To toggle dynamic updating, select the Update Memory window
command from the Setup menu. When Update Memory window is checked,
dynamic updating is enabled.

Keil Software 8051 Demo Kit 79

Changing the View Mode

dScope lets you change the view mode in the debug window. Display the debug
window using the debug button on the tool bar. Then, to change the view mode,
open the Commands menu in the debug window and select View High level,
View Mixed, or View Assembly. For example, View Mixed changes to the
mixed source and assembly display.

The debug window shows intermixed source and assembly lines.

Program Execution

Before you begin simulating the MEASURE program, use the Debug, Register,
and Serial buttons on the tool bar to display the debug, register, and serial
windows. You may disable other windows if your screen is not large enough.

From the toolbar, select the reset button to reset dScope. In the debug window,
select the View Mixed command from the Commands menu. Then, click on the
StepInto button once.

The StepInto button lets you single-step through your application and into
function calls. Click on the StepInto button a few more times to get to the loop
which clears the on-chip data space of the CPU.

80 Chapter 5. Using the 8051 tools

To skip the initialization code and go directly to the main function, select the
command window and enter “G,main”. dScope executes the startup code and
halts on the first statement in the main function.

Go Until Current Cursor Line

The current cursor line is the line which marks the current assembly or high-
level statement. You can move the line using the keyboard or the mouse.

dScope lets you use the current cursor line as a temporary breakpoint. Use this
feature to skip over code in your application. For example, you can skip over the
initialization code and stop one instruction before the main function is called.
You can do this in one of two ways:

n Variant 1: Move the cursor line to the LJMP main instruction. You can
use the cursor keys or you can click the mouse on that line. Click on the
GoTilCurs button in the debug window. dScope starts execution at the
current program counter and stops at the current cursor line.

n Variant 2: Double-click, with the right mouse button, on the LJMP main
instruction. This makes the selected line the current cursor line, starts
execution from the current PC, and stops when the current line is reached.

The program counter is now at the LJMP main instruction.

Keil Software 8051 Demo Kit 81

NOTE
After performing this command, the current cursor line and the current program
counter (PC) line are the same. The background color used for the line is the
PC highlight color.

Stepping Through High-Level Statements

Click on the StepInto button in the debug window and dScope jumps to the main
function of the MEASURE sample program. Select the View High level
command from the debug window Commands menu.

When viewing your application in high level mode, the meaning of a step
changes to mean one high-level statement instead of one assembly instruction.
Click on the StepInto button and watch as the current program counter line
moves down the screen.

NOTE
The StepOver button operates much like the StepInto button with the exception
that a function call is considered a single statement.

82 Chapter 5. Using the 8051 tools

Stepping Out of a Function

On occasion, you may accidentally step into a function unnecessarily. You can
use the StepOut button to complete execution of that function and return to the
statement immediately following the function call.

NOTE
You cannot StepOut from the main function because it is invoked by a long jmp
(LJMP) rather than a call instruction.

Setting and Removing Breakpoints

You can set an execution breakpoint in the debug window by double-clicking on
the desired source line. The selected line is highlighted and a [BR n] label is
displayed at the end of the line. If we set a breakpoint on the TR0 = 1 statement,
the debug window appears as follows:

Click on the Go button and dScope starts execution from the current program
counter and stops when the breakpoint is reached. To remove a breakpoint,
double-click on the line containing the breakpoint.

Keil Software 8051 Demo Kit 83

Call Stack

dScope internally tracks function nesting as the program executes. You can view
the function nesting at any time by opening the Call Stack window. Use the Call
Stack button on the tool bar to display Call Stack window.

This dialog box lists all currently nested
functions. Each line contains a nesting level
number, the numeric address of the invoked
function, and the symbolic name of the function
if debug information is available.

You can display the caller of a function by
selecting the function from the list. Then, you
can use the Show invocation button to display
the function call in the debug window.

Port Inputs

dScope provides two different ways to set digital and analog port inputs. You
can use the Peripheral menu in the main window to view and change the status of
input lines or you can enter I/O values in the command window. The following
commands change port values in the command window.

PORT4=0x23 set digital input PORT3 to 0x23.
AIN1=3.3 set analog input AIN1 to 3.3 volts.

Signal Functions

dScope lets you create signal functions to provide an input signal for digital or
analog inputs. To load a signal function, halt program execution by clicking on
the Stop button in the debug window and enter the following command in the
command window.

INCLUDE analog.inc

This loads the analog function from the file ANALOG.INC. This file defines a
signal function that adjusts the analog value that appears on analog channel 0.
This function appears as follows.

SIGNAL void analog0 (float limit) {
 float volts;

 printf ("ANALOG0 (%f) ENTERED\n", limit);
 while (1) { /* forever */
 volts = 0;
 while (volts <= limit) {

84 Chapter 5. Using the 8051 tools

 ain0 = volts; /* analog input-0 */
 twatch (30000); /* 30000 Cycles Time-Break */
 volts += 0.5; /* increase voltage */
 }

 volts = limit-0.5;
 while (volts >= 0.5) {
 ain0 = volts;
 twatch (30000); /* 30000 Cycles Time-Break */
 volts -= 0.5; /* decrease voltage */
 }
 }
}

After loading the analog include file, enter the following commands in the
command window.

ANALOG0 (5.0)
G

These commands set the limit for analog channel 0 to 5.0 volts and start program
execution.

Select the serial window and type D Enter. You should see the analog channel 0
signal begin swinging from 0 to 5 volts.

Trace Recording

It is common during debugging to reach a breakpoint where you require
information like register values and other circumstances which led to the
breakpoint. dScope provides trace recording for this purpose.

To enable trace recording, select the Record trace command from the Commands
menu to toggle instruction trace recording. When trace recording is enabled,
dScope records up to 512 assembly instructions and register contents.

You can use trace recording with the MEASURE example. Start running the
MEASURE program (click on the Go button in the debug window) and select
the serial window. MEASURE displays a menu and waits for input after
displaying Command. In the serial window, enter d.

When you enter this command, MEASURE begins to display measurement
values, the record time, two port values, and finally the analog input values.

Keil Software 8051 Demo Kit 85

The serial window displays what you would see on a dumb terminal connected to
the 80517’s serial port.

Click on the Stop button in the debug window. This halts program execution
immediately. Click on the View Trace button to view the trace buffer.

The upper portion of the debug window shows the trace history. The lower
portion of the debug window shows instructions from the program counter. The
program counter line is the delimiter between the trace history and instructions
not yet executed.

The trace history lines begin with negative numbers. The newest trace buffer
entry is -1. The oldest entry is -511. When the buffer overflows, the oldest
entries are removed to make space for new entries.

You may scroll into the trace buffer using the keyboard or the mouse. The
register window shows the register contents for the selected instruction in the
trace buffer.

NOTE
Program execution must be stopped before you can view the trace buffer.

86 Chapter 5. Using the 8051 tools

Watchpoints

Watchpoints are used to view the contents of simple variables, structures, and
arrays. You may setup watchpoints using the Watchpoints dialog box. To
display this dialog box, select the Watchpoints command from the Setup menu.

The following steps show you how to define
two watchpoints: one for the variable sindex
which is an unsigned int and one for the
structure current which contains a nested
time struct.

To add a watchpoint for sindex: Type
sindex in the Expr input line and click on
the Define watch button.

To add a watchpoint for current: Type
current in the Expr input line, select the
Multiple radio button to display structure
members on separate lines, and click on the Define watch button.

The watch window now contains the two watch expressions just defined.

The first watch expression shows the value of
sindex on a single line.

The second watch expression for current
generates much more output. Structure members
display on separate lines and are indented to
reflect the nesting level. The last few lines
display the data stored in the analog array.

The watch window updates at the end of each
execution command (StepInto, StepOut, or Go).
You may configure dScope to periodically
update the watch window during execution by
selecting the Update Watch Window command from the Setup menu.

Keil Software 8051 Demo Kit 87

Breakpoints

You use breakpoints to stop program execution on a given address or a specified
condition. Execution breakpoints are the simplest form; a function address or
line number specifies where to stop execution.

You may want to halt program execution when a variable contains a certain
value. The following example shows you how to stop program execution when
the current.time.sec structure member is set to 3.

Select the Breakpoints command from the Setup menu to display the Breakpoints
dialog box. In the Expression input line, enter current.time.sec==3. In the
Count input line, enter 1. Select the Write check box (this option specifies that
the break condition is tested only when the expression is written to).

When you are finished, click on the Define
button to set the breakpoint. To test the
breakpoint condition perform the following
steps:

1. Reset dScope,

2. Begin executing the MEASURE sample
program (click on the Go button in the
debug window),

3. Press Enter in the serial window at the
MEASURE command prompt.

After a few seconds, dScope halts execution. The program counter line in the
debug window marks the line in which the breakpoint occurred.

88 Chapter 5. Using the 8051 tools

Using the Performance Analyzer

dScope lets you perform timing analysis of your applications using the integrated
performance analyzer. You can specify an address range or a function for
dScope to use. To prepare for timing analysis, enter the following commands in
the command window.

PA main
PA timer0
PA clear_records
PA measure_display
PA save_current_measurements
PA read_index
RESET PA /* Initialize PA */

These commands create the performance analyzer address ranges for timing
statistics. You may create or view the ranges with the Setup Performance
Analyzer command in the Setup menu.

Perform the following steps to watch the performance analyzer in action:

1. Open the performance analyzer window using the button on the tool bar. The
display shows the ranges defined above. The <unspecified> line
accumulates all execution time outside the defined ranges,

2. Reset dScope,

3. Start program execution by clicking on the Go button in the debug window,

4. Select the serial window and type S Enter D Enter.

The performance analyzer window shows a bar graph for each range.

The bar graph is dynamically updated and shows the percent of the time spent
executing code in each range. Click on the range to see timing statistics for each
individual range.

Keil Software 8051 Demo Kit 89

BADCODE: An Example with Syntax
Errors
The \C51\EXAMPLES\BADCODE\ directory contains a file called BADCODE.C. This
file is used to demonstrate how µVision interacts with the compiler to help you
locate errors and warnings in your source program.

Open the BADCODE.C file using the Open command in the File menu. Select the
Compile File command from the Project menu to compile the file. After
compilation, µVision determines that there are errors and displays an error
window for you to peruse.

You may use the cursor keys in the error window to scroll through the errors
generated by the compiler. As you move from line to line, the source window is
updated to reflect the line on which the error was encountered.

When the error window displays, it may cover a portion of the source window.
Use the tile vertical or tile horizontal button to display the windows side-by-side.

90 Chapter 5. Using the 8051 tools

Keil Software 8051 Demo Kit 91

Chapter 6. Hardware Products
Keil Software offers a number of hardware products that you can use to assist in
8051 software development. Currently, our hardware products include:

n ProROM EPROM Emulator,

n MCB517A Evaluation Board,

n MCB520 Evaluation Board.

Each of these products is described in the following sections.

ProROM EPROM Emulator
ProROM is an EPROM emulator that connects between the parallel printer port
of your PC and the ROM socket of your target hardware. With ProROM, you
can rapidly develop and test your embedded target program.

It only takes a few seconds to download 64 Kbytes of program code to ProROM.
You no longer have to rely on or wait for EPROM programmers and erasers that
may take several minutes between software iterations.

ProROM comes with an easy to use loader program that downloads your binary
or Intel HEX files. Additionally, you can use ProROM with the µVision
development environment to automate your build and load development cycle.

The ProROM EPROM emulator comes complete with:

n User’s Manual,

n Software and file conversion utilities,

n ProROM EPROM Emulator,

n 28-pin DIP interface cable,

n PC parallel-port cable.

ProROM provides a quick, convenient solution for rapid software development.

92 Chapter 6. Hardware Products

MCB517A Evaluation Board
The MCB517A evaluation board is a single board computer that supports the
Siemens 80C517(A) microcontroller. The MCB517A lets you write and test
code for the 80C517(A) using the Keil Software 8051 development tools and the
8051 monitor.

The MCB517A includes a user’s manual that clearly describes the board and an
evaluation kit that includes a 2 Kbyte size-limited tool set. The tools provided
include:

n The C51 compiler,

n A51 assembler,

n µVision/51 IDE for Windows,

n dScope-51 simulator for Windows,

n 8051 Monitor program and dScope interface DLLs,

n all the necessary utilities,

n and several example programs.

The 8051 monitor lets you download and execute 8051 applications you develop
using the tools included with the package. You can build applications using
µVision and the C51 compiler and A51 assembler, and you can test and debug
applications using dScope and the monitor.

The MCB517A is a complete starter package for anyone interested in the
Siemens 517. Since the Siemens 517 CPU is a superset of the 8051 and 80515
the MCB517A board can be used also for projects using the 8051, 80C515(A)
and 80C517(A). The MCB517A uses for communication with the Monitor the
2nd serial interface of the 517 CPU, this frees up the standard 8051 serial
interface for the user application. The MCB517A is a complete starter package
for anyone interested in the Siemens 517.

Keil Software 8051 Demo Kit 93

MCB520 Evaluation Board
The MCB520 evaluation board is a single board computer that supports the
Dallas Semiconductor 87C520 microcontroller. The MCB520 lets you evaluate
the performance characteristics of the 87C520. Board configuration is
accomplished using clearly labeled DIP switches.

The MCB520 includes a user’s manual that describes the board and data books
that describe the 87C520 architecture. A 2 Kbyte size limited tool set is also
included. The tools provided include:

n The C51 compiler,

n µVision/51 IDE for Windows,

n dScope-51 simulator for Windows,

n 8051 Monitor program and dScope interface DLLs,

n all the necessary utilities and example programs to help you get started.

The 8051 monitor program comes installed on the board. The monitor lets you
download and execute 8051 applications you develop using the tools included
with the package. You can build applications using µVision and the C51
compiler and you can test and debug applications using dScope and the monitor.

The MCB520 is a complete starter package for anyone interested in the
Dallas Semiconductor 87C520.

94 Chapter 6. Hardware Products

Keil Software 8051 Demo Kit 95

Chapter 7. Real-Time Kernels
This chapter discusses the different real-time operating systems that are available
for the 8051 microcontroller.

RTX-51 Real-Time Operating System
The RTX-51 real-time operating system is a multitasking kernel for the 8051
family of processors that simplifies the software design of complex, time-critical
applications.

There are two distinct versions of RTX-51:

RTX-51 Full which performs both round-robin and preemptive task switching
using up to four task priorities. RTX-51 Full works in parallel
with interrupt functions. Signals and messages may be passed
between tasks using a mailbox system. You can allocate and
free memory from a memory pool. You can force a task to wait
for an interrupt, time-out, or signal or message from another task
or interrupt.

RTX-51 Tiny which is a subset of RTX-51 Full. RTX-51 Tiny easily runs on
single-chip 8051 systems without any external data memory.
RTX-51 Tiny supports many of the features found in RTX-51
Full with the following exceptions:

1. Task switching is accomplished by round-robin multitasking
and signals.

2. Preemptive task switching is not supported.

3. No message routines are included.

4. No memory pool allocation routines are available.

The rest of this section uses RTX-51 to refer to RTX-51 Full and RTX-51 Tiny.
Differences between the two are stated where applicable.

96 Chapter 7. Real-Time Kernels

Introduction

Many microcontroller applications require simultaneous execution of multiple
jobs or tasks. For such applications, a real-time operating system (RTOS) allows
flexible scheduling of system resources (CPU, memory, etc.) to several tasks.
RTX-51 implements a powerful RTOS which is easy to use. RTX-51 works
with all 8051 derivatives.

You write and compile RTX-51 programs using standard C constructs and
compiling them with C51. Only a few deviations from standard C are required
in order to specify the task ID and priority. RTX-51 programs also require that
you include the real-time executive header file and link using the BL51 code
banking linker/locator and the appropriate RTX-51 library file.

Single Task Program

A standard C program starts execution with the main function. In an embedded
application, main is usually coded as an endless loop and can be thought of as a
single task which is executed continuously. For example:

int counter;

void main (void) {
 counter = 0;

 while (1) { /* repeat forever */
 counter++; /* increment counter */
 }
}

Keil Software 8051 Demo Kit 97

Round-Robin Program

A more sophisticated C program may implement what is called a round-robin
pseudo-multitasking scheme without using a RTOS. In this scheme, tasks or
functions are called iteratively from within an endless loop. For example:

int counter;

void main (void) {
 counter = 0;

 while (1) { /* repeat forever */
 check_serial_io ();
 process_serial_cmds (); /* process serial input */

 check_kbd_io ();
 process_kbd_cmds (); /* process keyboard input */

 adjust_ctrlr_parms (); /* adjust the controller */

 counter++; /* increment counter */
 }
}

98 Chapter 7. Real-Time Kernels

Round-Robin Scheduling With RTX-51

RTX-51 also performs round-robin multitasking which allows quasi-parallel
execution of several endless loops or tasks. Tasks are not executed concurrently
but are time-sliced. The available CPU time is divided into time slices and RTX-
51 assigns a time slice to every task. Each task is allowed to execute for a
predetermined amount of time. Then, RTX-51 switches to another task that is
ready to run and allows that task to execute for a while. The time slices are very
short, usually only a few milliseconds. For this reason, it appears as though the
tasks are executing simultaneously.

RTX-51 uses a timing routine which is interrupt driven by one of the 8051
hardware timers. The periodic interrupt that is generated is used to drive the
RTX-51 clock.

RTX-51 does not require you to have a main function in your program. It
automatically begins executing task 0. If you do have a main function, you must
manually start RTX-51 using the os_create_task function in RTX-51 Tiny and
the os_start_system function in RTX-51.

The following example shows a simple RTX-51 application that uses only
round-robin task scheduling. The two tasks in this program are simple counter
loops. RTX-51 starts executing task 0 which is the function names job0. This
function adds another task called job1. After job0 executes for a while, RTX-
51 switches to job1. After job1 executes for a while, RTX-51 switches back
to job0. This process is repeated indefinitely.

#include <rtx51tny.h>

int counter0;
int counter1;

void job0 (void) _task_ 0 {
 os_create (1); /* mark task 1 as ready */
 while (1) { /* loop forever */
 counter0++; /* update the counter */
 }
}

void job1 (void) _task_ 1 {
 while (1) { /* loop forever */
 counter1++; /* update the counter */
 }
}

Keil Software 8051 Demo Kit 99

RTX-51 Events

Rather than waiting for a task’s time slice to be up, you can use the os_wait
function to signal RTX-51 that it can let another task begin execution. This
function suspends execution of the current task and waits for a specified event to
occur. During this time, any number of other tasks may be executing.

Using Time-outs with RTX-51

The simplest event you can wait for with the os_wait function is a time-out
period in RTX-51 clock ticks. This type of event can be used in a task where a
delay is required. This could be used in code that polled a switch. In such a
situation, the switch need only be checked every 50ms or so.

The next example shows how you can use the os_wait function to delay
execution while allowing other tasks to execute.

#include <rtx51tny.h>

int counter0;
int counter1;

void job0 (void) _task_ 0 {
 os_create (1); /* mark task 1 as ready */
 while (1) { /* loop forever */
 counter0++; /* update the counter */
 os_wait (K_TMO, 3); /* pause for 3 clock ticks */
 }
}

void job1 (void) _task_ 1 {
 while (1) { /* loop forever */
 counter1++; /* update the counter */
 os_wait (K_TMO, 5); /* pause for 5 clock ticks */
 }
}

In the above example, job0 enables job1 as before. But now, after
incrementing counter0, job0 calls the os_wait function to pause for 3 clock
ticks. At this time, RTX-51 switches to the next task, which is job1. After
job1 increments counter1, it too calls os_wait to pause for 5 clock ticks.
Now, RTX-51 has no other tasks to execute, so it enters an idle loop waiting for
3 clock ticks to elapse before it can continue executing job0.

The result of this example is that counter0 gets incremented every 3 timer ticks
and counter1 gets incremented every 5 timer ticks.

100 Chapter 7. Real-Time Kernels

Using Signals with RTX-51

You can use the os_wait function to pause a task while waiting for a signal (or
binary semaphore) from another task. This can be used for coordinating two or
more tasks. Waiting for a signal works as follows: If a task goes to wait for a
signal, and the signal flag is 0, the task is suspended until the signal is sent. If
the signal flag is already 1 when the task queries the signal, the flag is cleared,
and execution of the task continues. The following example illustrates this:

#include <rtx51tny.h>

int counter0;
int counter1;

void job0 (void) _task_ 0 {
 os_create (1); /* mark task 1 as ready */
 while (1) { /* loop forever */
 if (++counter0 == 0) /* update the counter */
 os_send_signal (1); /* signal task 1 */
 }
}

void job1 (void) _task_ 1 {
 while (1) { /* loop forever */
 os_wait (K_SIG, 0, 0); /* wait for a signal */
 counter1++; /* update the counter */
 }
}

In the above example, job1 waits until it receives a signal from any other task.
When it does receive a signal, it increments counter1 and again waits for
another signal. job0 continuously increments counter0 until it overflows to 0.
When that happens, job0 sends a signal to job1 and RTX-51 marks job1 as
ready for execution. job1 does not start until RTX-51 gets its next timer tick.

Keil Software 8051 Demo Kit 101

Priorities and Preemption

One disadvantage of the above program example is that job1 is not started
immediately when it is signaled by job0. In some circumstances, this is
unacceptable for timing reasons. RTX-51 allows you to assign priority levels to
tasks. When a higher priority task becomes available, it interrupts or preempts a
lower priority task. This is called preemptive multitasking or just preemption.

NOTE
Preemption and priority levels are not supported by RTX-51 Tiny.

You can modify the above function declaration for job1 to give it a higher
priority than job0. By default, all tasks are assigned a priority level of 0. This
is the lowest priority level. The priority level can be 0 through 3. The following
example shows how to define job1 with a priority level of 1.

void job1 (void) _task_ 1 _priority_ 1 {
 while (1) { /* loop forever */
 os_wait (K_SIG, 0, 0); /* wait for a signal */
 counter1++; /* update the counter */
 }
}

Now, whenever job0 sends a signal to job1, job1 starts immediately.

Compiling and Linking with RTX-51

RTX-51 is fully integrated into the C51 programming language. This makes
generating RTX-51 applications very easy to master. You do not need to write
any 8051 assembly routines or functions. You only have to compile your RTX-
51 programs with C51 and link them with the BL51 code banking linker/locator.

For example, you should use the following command lines with RTX-51 Tiny.

C51 EXAMPLE.C
BL51 EXAMPLE.OBJ RTX51TINY

Use the following command lines to compile and link with RTX-51.

C51 EXAMPLE.C
BL51 EXAMPLE.OBJ RTX51

102 Chapter 7. Real-Time Kernels

Interrupts

RTX-51 works in parallel with interrupt functions. Interrupt functions can
communicate with RTX-51 and can send signals or messages to RTX-51 tasks.
RTX-51 Full lets you assign an interrupt to a task.

Message Passing

RTX-51 Full supports message exchange between tasks with the following
functions: isr_recv_message, isr_send_message, os_send_message, and
os_wait.

A message is a 16-bit value which can be interpreted as a number or as a pointer
to a memory block. RTX-51 Full supports variable sized messages using a
memory pool system.

CAN Communication

Controller Area Networks are easily implemented with RTX-51/CAN. RTX-
51/CAN is a CAN task integrated into RTX-51 Full. An RTX-51 CAN task
implements message passing via the CAN network. Other CAN stations can be
configured either with or without RTX-51.

BITBUS Communication

RTX-51 Full includes both master and slave BITBUS tasks supporting message
passing with the Intel 8044.

Keil Software 8051 Demo Kit 103

Events

RTX-51 supports the following events for the os_wait function:

n A Timeout suspends the running task for a defined number of clock ticks.

n An Interval is similar to a timeout, however, the interval is intended for use
with tasks that must execute synchronously.

n Signals are used for inter-task coordination.

n Messages are used for exchange of messages. †

n An Interrupt lets a task wait for an 8051 hardware interrupt. †

n Semaphores are used for management of shared system resources. †

† These events are available only in RTX-51 Full.

104 Chapter 7. Real-Time Kernels

RTX-51 Functions

The following table lists some of the RTX-51 functions along with a brief
description and execution timing (for RTX-51 Full).

Function Description CPU Cycles

isr_recv_message † Receive a message (call from interrupt). 71 (with message)

isr_send_message † Send a message (call from interrupt). 53

isr_send_signal Send a signal to a task (call from interrupt). 46

os_attach_interrupt † Assign task to interrupt source. 119

os_clear_signal Delete a previously sent signal. 57

os_create_task Move a task to execution queue. 302

os_create_pool † Define a memory pool. 644 (size 20 * 10 bytes)

os_delete_task Remove a task from execution queue. 172

os_detach_interrupt † Remove interrupt assignment. 96

os_disable_isr † Disable 8051 hardware interrupts. 81

os_enable_isr † Enable 8051 hardware interrupts. 80

os_free_block † Return a block to a memory pool. 160

os_get_block † Get a block from a memory pool. 148

os_send_message † Send a message (call from task). 443 with task switch

os_send_signal Send a signal to a task (call from tasks). 408 with task switch
316 with fast task switch
71 without task switch

os_send_token † Set a semaphore (call from task). 343 with fast task switch
94 without task switch

os_set_slice † Set the RTX-51 system clock time slice. 67

os_wait Wait for an event. 68 for pending signal
160 for pending message

† These functions are available only in RTX-51 Full.

Additional debug and support functions in RTX-51 Full include the following:

Function Description

oi_reset_int_mask Disables interrupt sources external to RTX-51.

oi_set_int_mask Enables interrupt sources external to RTX-51.

os_check_mailbox Returns information about the state of a specific mailbox.

os_check_mailboxes Returns information about the state of all mailboxes in the system.

os_check_pool Returns information about the blocks in a memory pool.

os_check_semaphore Returns information about the state of a specific semaphore.

os_check_semaphores Returns information about the state of all semaphores in the system.

os_check_task Returns information about a specific task.

os_check_tasks Returns information about all tasks in the system.

Keil Software 8051 Demo Kit 105

CAN Functions

The CAN functions are available only with RTX-51 Full. CAN controllers
supported include the Philips 82C200 and 80C592 and the Intel 82526. More
CAN controllers are in preparation.

CAN Function Description

can_bind_obj Bind an object to a task; task is started when object is received.

can_def_obj Define communication objects.

can_get_status Get CAN controller status.

can_hw_init Initialize CAN controller hardware.

can_read Directly read an object’s data.

can_receive Receive all unbound objects.

can_request Send a remote frame for the specified object.

can_send Send an object over the CAN bus.

can_start Start CAN communications.

can_stop Stop CAN communications.

can_task_create Create the CAN communication task.

can_unbind_obj Disconnect the binding between a task and an object.

can_wait Wait for reception of a bound object.

can_write Write new data to an object without sending it.

106 Chapter 7. Real-Time Kernels

Technical Data

Description RTX-51 Full RTX-51 Tiny

Number of tasks 256; max. 19 tasks active 16

RAM requirements 40 .. 46 bytes DATA
20 .. 200 bytes IDATA (user stack)
min. 650 bytes XDATA

7 bytes DATA
3 * <task count> IDATA

Code requirements 6KB .. 8KB 900 bytes

Hardware requirements timer 0 or timer 1 timer 0

System clock 1000 .. 40000 cycles 1000 .. 65535 cycles

Interrupt latency < 50 cycles < 20 cycles

Context switch time 70 .. 100 cycles (fast task)
180 .. 700 cycles (standard task)
depends on stack load

100 .. 700 cycles
depends on stack load

Mailbox system 8 mailboxes with 8 integer entries
each

not available

Memory pool system up to 16 memory pools not available

Semaphores 8 * 1 bit not available

Keil Software 8051 Demo Kit 107

Chapter 8. Command Reference
This chapter briefly describes the commands and controls for the Keil Software
8051 development tools. Commands and controls are listed in a tabular format
along with a description. Underlined characters represent abbreviations for the
particular control or directive.

108 Chapter 8. Command Reference

A51 Macro Assemblers
Invocation: A51 sourcefile �directives�

A51 @commandfile

where

sourcefile is the name of an assembler source file.

commandfile is the name of a file which contains a complete command line
for the assembler including a sourcefile and directives. You
may use a command file to make assembling a source file easier
or when you have more directives than fit on the command line.

directives are parameters which are described in the following table.

A51 Controls Meaning

DATE(date) Places date string in header (9 characters maximum).

DEBUG Includes debugging symbol information in the object file.

ERRORPRINT�(filename)� Outputs error messages to filename.

INCLUDE(filename) Includes the contents of filename in the assembly.

MACRO Enables standard macro processing.

MPL Enables Intel-style macro processing.

NOAMAKE Excludes AutoMAKE information from the object file.

NOCOND Excludes unassembled conditional assembly code from the
listing file.

NOGEN Disables macro expansions in the listing file.

NOLINES Excludes line number information from the object file.

NOLIST Excludes the assembler source code from the listing file.

NOMACRO Disables standard macro processing.

NOMOD51 Disables predefined 8051-specific special function registers.

NOSYMBOLS Excludes the symbol table from the listing file.

NOSYMLIST Excludes symbol definitions from the listing file.

OBJECT�(filename)�, NOOBJECT Enables or disables object file output. The object file is
saved as filename if specified.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing
file.

PRINT�(filename)�, NOPRINT Enables or disables listing file output. The listing file is
saved as filename if specified.

REGISTERBANK(num, …),
NOREGISTERBANK

Indicates that one or more registerbanks are used or
indicates that no register banks are used.

RESET (symbol, …) Assigns a value of 0000h to the specified symbols.

SET (symbol, …) Assigns a value of 0FFFFh to the specified symbols.

TITLE(title) Includes title in the listing file header.

XREF Includes a symbol cross reference listing in the listing file.

Keil Software 8051 Demo Kit 109

C51 Compiler
Invocation: C51 sourcefile �directives�

C51 @commandfile

where

sourcefile is the name of a C source file.

commandfile is the name of a file which contains a complete command line
for the compiler including a sourcefile and directives. You
may use a command file to make compiling a source file easier
or when you have more directives than fit on the command line.

directives are control parameters which are described in the following
table.

C51 Controls Meaning

CODE Includes an assembly listing in the listing file.

COMPACT Selects the COMPACT memory model.

DEBUG Includes debugging information in the object file.

DEFINE Defines preprocessor names on the command line.

FLOATFUZZY Specifies the number of bits rounded during floating-point
comparisons.

INTERVAL Specifies the interval for interrupt vectors.

INTVECTOR(n), NOINTVECTOR Specifies offset for interrupt table, using n, or excludes
interrupt vectors from the object file.

LARGE Selects the LARGE memory model.

LISTINCLUDE Includes the contents of include files in the listing file.

MAXARGS(n) Specifies the number of bytes reserved for variable length
argument lists.

MOD517 Enables support for the additional hardware of the
Siemens 80C517 and its derivatives.

MODDP2 Enables support for the additional hardware of Dallas
Semiconductor 80C320/520/530 and the AMD 80C521.

NOAMAKE Excludes AutoMAKE information from the object file.

NOAREGS Disables absolute register addressing using ARn
instructions.

NOCOND Excludes skipped conditional code from the listing file.

NOEXTEND Disables 8051/251 extensions and processes only ANSI C
constructs.

NOINTPROMOTE Disables ANSI integer promotion rules.

NOREGPARMS Disables passing parameters in registers.

OBJECT�(filename)�, NOOBJECT Enables or disables object file output. The object file is
saved as filename if specified.

110 Chapter 8. Command Reference

C51 Controls Meaning

OBJECTEXTEND † Includes additional variable type information in the object
file.

OPTIMIZE Specifies the level of optimization performed by the
compiler.

ORDER Locates variables in memory in the same order in which
they are declared in the source file.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing
file.

PREPRINT�(filename)� Produces a preprocessor listing file with all macros
expanded. The preprocessor listing file is saved as
filename if specified.

PRINT�(filename)�, NOPRINT Enables or disables listing file output. The listing file is
saved as filename if specified.

REGFILE(filename) Specifies the name of the generated file to contain register
usage information.

REGISTERBANK Selects the register bank to use functions in the source
file.

ROM({SMALL|COMPACT|LARGE}) Controls generation of AJMP and ACALL instructions.

SMALL Selects the SMALL memory model.

SRC Creates an assembly source file instead of an object file.

SYMBOLS Includes a list of the symbols used in the listing file.

WARNINGLEVEL(n) Controls the types and severity of warnings generated.

Keil Software 8051 Demo Kit 111

L51/BL51 Linker/Locator
Invocation: BL51 inputlist �TO outputfile� �directives�

L51 inputlist �TO outputfile� �directives�

BL51 @commandfile

L51 @commandfile

where

inputlist is a list of the object files and libraries, separated by commas,
that the linker includes in the final 8051 application.

outputfile is the name of the absolute object module the linker creates.

commandfile is the name of a file which contains a complete command line
for the linker/locator including an inputlist and directives.
You may use a command file to make linking your application
easier or when you have more input files or more directives than
fit on the command line.

directives are control parameters which are described in the following
table.

BL51 Controls Meaning

BANKAREA ‡ Specifies the address range where the code banks are
located.

BANKx ‡ Specifies the starting address, segments, and object
modules for code banks 0 to 31.

BIT Locates and orders BIT segments.

CODE Locates and orders CODE segments.

COMMON ‡ Specifies the starting address, segments, and object
modules to place in the common bank. This directive is
essentially the same as the CODE directive.

DATA Locates and orders DATA segments.

IDATA Locates and orders IDATA segments.

IXREF Includes a cross reference report in the listing file.

NAME Specifies a module name for the object file.

NOAMAKE Excludes AutoMAKE information from the object file.

NODEBUGLINES Excludes line number information from the object file.

NODEBUGPUBLICS Excludes public symbol information from the object file.

NODEBUGSYMBOLS Excludes local symbol information from the object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file.

NOMAP Excludes memory map information from the listing file.

112 Chapter 8. Command Reference

BL51 Controls Meaning

NOOVERLAY Prevents overlaying or overlapping local BIT and DATA
segments.

NOPUBLICS Excludes public symbol information from the listing file.

NOSYMBOLS Excludes local symbol information from the listing file.

OVERLAY Directs the linker to overlay local data & bit segments and
lets you change references between segments.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing
file.

PDATA Specifies the starting address for PDATA segments.

PRECEDE Locates and orders segments that should precede all others
in the internal data memory.

PRINT Specifies the name of the listing file.

RAMSIZE Specifies the size of the on-chip data memory.

REGFILE(filename) Specifies the name of the generated file to contain register
usage information.

RTX51 ‡ Includes support for the RTX-51 full real-time kernel.

RTX51TINY ‡ Includes support for the RTX-51 tiny real-time kernel.

STACK Locates and orders STACK segments.

XDATA Locates and orders XDATA segments.

‡ These controls are available only in the BL51 code banking linker/locator.

Keil Software 8051 Demo Kit 113

OC51 Banked Object File Converter
Invocation: OC51 banked_file

where

banked_file is the name of a banked object file.

OH51 Object-Hex Converter
Invocation: OH51 absfile �HEXFILE(hexfile)�

where

absfile is the name of an absolute object file.

hexfile is the name of the Intel HEX file to create.

LIB51 Library Manager
Invocation: LIB51 �command�

where

command is a control command described in the following table. If no
command is given, LIB51 enters an interactive command mode.

LIB51 Command Meaning

ADD Adds an object module to the library file.

CREATE Creates a new library file.

DELETE Removes an object module from the library file.

EXIT Exits the library manager interactive mode.

HELP Displays help information for the library manager.

LIST Displays module and public symbol information stored in the
library file.

114 Index

Index

µVision
Editor ... 51
Menu Commands 52
Options... 53
Overview...................................... 48
Project Manager 54
Starting... 48

µVision/51 for Windows 45
8051 Development Tools.............. 19,20
8051 Microcontroller Family 19
8051/251 Product Line 13

A
A51 .. 17
A51 Assembler 38

Configuration 38
Functional Overview.................... 38
Listing File Example.................... 39

A51 Macro Assembler Kit 17
Additional items, document

conventions iv
alien ... 31
asm... 31
AUTOEXEC.BAT............................... 9

B
Backing Up Your Disks....................... 7
BL51 code banking

linker/locator................................... 40
Code Banking............................... 41
Common Area.............................. 41
Data Address Management 40
Executing Functions in Other

Banks... 42
Listing File Example.................... 43

bold capital text, use of iv
braces, use of iv

C
C51 Compiler..................................... 21

Code Optimizations...................... 32
Compact model 25

Data Types....................................23
Debugging35
Function Return Values30
Generic Pointers26
Interfacing to Assembly................31
Interfacing to PL/M-51.................31
Interrupt Functions29
Language Extensions....................22
Large model..................................25
Library Routines...........................36
Listing File Example.....................36
Memory Models25
Memory Specific Pointers27
Memory Types..............................24
Parameter Passing.........................29
Pointers...26
Real-Time Operating System

Support30
Reentrant Functions......................28
Register Optimizing......................30
Small model..................................25

C51 Compiler Kit16
C51 Developer’s Kit16
C51 Professional Developer’s

Kit..15
CA51 ..16
can_bind_obj105
can_def_obj105
can_get_status105
can_hw_init105
can_read ...105
can_receive.......................................105
can_request.......................................105
can_send...105
can_start ...105
can_stop ...105
can_task_create105
can_unbind_obj105
can_wait ...105
can_write..105
Changes to the Documentation.............3
Choices, document conventionsiv
COMPACT24,25
CONFIG.SYS.......................................6
courier typeface, use ofiv

Keil Software 8051 Demo Kit 115

D
DEBUG ..38
Demo Kit ..2
Directory Structure8
Disk Cache ...11
Displayed text, document

conventions.......................................iv
DK51 ..16
Document conventionsiv
Documentation Changes.......................3
DOS-Based Product Installation...........7
DOS-based tool requirements...............6
double brackets, use ofiv
DS51...17
dScope

Breakpoints62
Code Coverage..............................63
Command Window.......................59
CPU Simulation57
Debug Window.............................58
Functions.......................................62
Overview.......................................55
Performance Analyzer

Window......................................61
Serial Window60
Starting..48
Watch Window60

dScope-51 for Windows45
dScope-51 Simulator Kit17

E
ellipses, use ofiv
ellipses, vertical, use of........................iv
endasm..31
Environment Settings............................9
Evaluation Kit.......................................2
Evaluation Users...................................3
Experienced Users3

F
Filename, document conventions.........iv
FR51...17

G
Global Register Optimization34

H
Help ... 4

I
Improving System Performance......... 10
Installation ... 5
Installing the Software 7
interrupt.. 29
Introduction.. 1
isr_recv_message 102,104
isr_send_message...................... 102,104
isr_send_signal................................. 104
italicized text, use of iv

K
Key names, document

conventions iv

L
LARGE... 24,25
LIB51 library manager....................... 44

M
Manual Topics 2
Map files .. 43
MCB517A Evaluation Board............. 92
MCB520 Evaluation Board................ 93

N
New Users.. 3
NOMOD51 .. 38
NOOVERLAY................................... 40
NOREGPARMS 29,31

O
OBJECTEXTEND............................. 35
OC51 Banked Object File

Converter... 44
OH51 Object-Hex Converter 44
oi_reset_int_mask 104
oi_set_int_mask 104
OMF51..................................... 20,31,35

116 Index

Omitted text, document
conventions iv

Optional items, document
conventions iv

os_attach_interrupt 104
os_check_mailbox 104
os_check_mailboxes 104
os_check_pool 104
os_check_semaphore 104
os_check_semaphores...................... 104
os_check_task 104
os_check_tasks 104
os_clear_signal 104
os_create_pool 104
os_create_task.................................. 104
os_delete_task.................................. 104
os_detach_interrupt.......................... 104
os_disable_isr 104
os_enable_isr 104
os_free_block................................... 104
os_get_block 104
os_send_message 102,104
os_send_signal 104
os_send_token.................................. 104
os_set_slice 104
os_wait...................................... 102,104
OVERLAY .. 40

P
PK51 .. 15
Printed text, document

conventions iv
ProROM EPROM Emulator 91

R
RAM Disk.. 10
README.TXT.................................... 3
reentrant ... 28
REGPARMS...................................... 29
Reporting a problem 4
Requesting Assistance.......................... 4
RTX-51.. 95

BITBUS Communication........... 102
CAN Communication................. 102

Compiling...................................101
Events99,103
Functions104
Interrupts102
Introduction96
Linking101
Message Passing.........................102
Preemption..................................101
Priorities101
Round-Robin Scheduling..............98
Technical Data............................106
Using Signals..............................100
Using Time-outs99

RTX-51 Full Real-Time Kernel17

S
sans serif typeface, use of....................iv
SMALL ...24,25
SRC..31
System Requirements...........................6

T
Technical Support4
Temporary Files10
Types of Users......................................3

U
User ..3
using...29

V
Variables, document conventions........iv
vertical bar, use ofiv

W
What’s Included2
Windows-Based Product

Installation...7
Windows-based tool

requirements6

Keil Elektronik GmbH E-Mail Keil Software, Inc.
Bretonischer Ring 15 saes@keil.com 16990 Dallas Parkway
D-85630 Grasbrunn b. Munchen Suite 120
Germany World Wide Web Dallas, Texas 75248-1903
(49) (089) 45 60 40 - 0 Phone http://www.keil.com/ Sales: (800) 348-8051
(49) (089) 46 81 62 Fax Phone: (972) 735-8052

Fax: (972) 735-8055

