[1SS wARE

8051 Demo Kit

Getting Started with the 8051
Microcontroller Development Tools

User’s Guide

Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It isagainst the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1990-1998 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.

Keil C51™ and dScope™ are trademarks of Keil Elektronik GmbH.

Microsoft®, MS-DOS®, and Windows™ are trademarks or registered trademarks
of Microsoft Corporation.

IBM®, PC®, and PS/2® are registered trademarks of International Business

Machines Corporation.

Intel®, MCS® 51, ASM-51°, and PL/M-51° are registered trademarks of Intel
Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Keil Software 8051 Demo Kit iii

Preface

Thismanual is an introduction to the Keil Software 8051 microcontroller

software development tools. It introduces new users and interested readersto

our product line. With nothing more than this book, you should be able to
successfully run and use our tools. This user’s guide contains the following
chapters.

“Chapter 1. Introduction” gives an overview of this user’s guide.

“Chapter 2. Installation” describes how to install our software and how to setup
an operating environment for the tools.

“Chapter 3. 8051 Product Line” discusses the different products that we offer
for the 8051 microcontroller. Read this chapter to determine which product
provides the tools you need.

“Chapter 4. 8051 Development Tools” describes the major features of our 8051
development tools including the C compiler, assembler, debugger, and integrated
development environment.

“Chapter 5. Using the 8051 tools” describes the provided sample programs
along with a step-by-step guide that shows how to build them using our tools.

“Chapter 6. Hardware Products” introduces our hardware-based tools that you
can use to aid in development and debugging. Our evaluation boards for the
80C517A and 87C520 and our EPROM emulator are discussed.

“Chapter 7. Real-Time Kernels” discusses the RTX-51 Tiny and RTX-51 Full
real-time operating systems. This chapter provides an overview of multitasking
systems, why they are desirable, and how they are used.

“Chapter 8. Command Reference” briefly describes the commands and controls
for our 8051 development tools.

NOTE
This manual assumes that you are familiar with Microsoft Windows and the
hardware and instruction set of the 8051 microcontroller.

Preface

Document Conventions

This document uses the following conventions:

SEMTIES

README.TXT

Couri er

Variables

Elements that
repeat...

Omitted code

[Optional Items]]

{ opt1| opt2}

Keys

Point
Click

Drag

Double-Click

Description ‘

Bold capital text is used for the names of executable programs, data files,
source files, environment variables, and commands you enter at the MS-
DOS command prompt. This text usually represents commands that you
must type in literally. For example:

CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Text in this typeface is used to represent information that displays on
screen or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Text in italics represents information that you must provide. For example,
projectfile in a syntax string means that you must supply the actual project
file name.

Occasionally, italics are also used to emphasize words in the text.
Ellipses (...) are used to indicate an item that may be repeated.

Vertical ellipses are used in source code listings to indicate that a
fragment of the program is omitted. For example:

void main (void) {

while (1);
Optional arguments in command-line and option fields are indicated by
double brackets. For example:

C51 TEST. C PRINT [(filenane) |

Text contained within braces, separated by a vertical bar represents a
group of items from which one must be chosen. The braces enclose all of
the choices and the vertical bars separate the choices. One item in the list
must be selected.

Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

Move the mouse until the mouse pointer rests on the item desired.

Quickly press and release a mouse button while pointing at the item to be
selected.

Press the left mouse button while on a selected item. Then, hold the
button down while moving the mouse. When the item to be selected is at
the desired position, release the button.

Click the mouse button twice in rapid succession.

Keil Software 8051 Demo Kit %

Contents
Chapter 1. INtrodUCLION........cciiieiee e 1
Y= LU= o oo S 2
Evaluation and DEmMO KitS.......cocueiiieiriiieenieeeriees s 2
TYPES Of USEIS...eiiiiecieceeeec e sttt sttt s e ettt e e se e aeseestesbesreeseenneneeneensesrenneas 3
Changes to the DOCUMENEALIONcccvieiiieeeceerees et ee e sre e 3
REQUESLING ASSISEANCE.......ecveeeeeeeiesiesesie et e e see e seeteseestesaeese e e e e eneesresrenneans 4
Chapter 2. INStallation.........ccceveiieieieceese e 5
SYSLEM REQUITEMENES.ecueeeeeeeieieseestesesseeseesaestesee s e saeesesseeeeseessessesaesresseeseseessensessens 6
Backing UpP YOUF DiSKS.......ccereeiererisie e steeeeesee st s nae e s 7
INStAlliNG the SOftWAr......ccviieceeceee e e enes 7
DITECLONY SIUCIUIEeevveie e cteeeeeeete ettt s sre e e e e e besresresneeneenaesnesenns 8
ENVIrONMENt SEHINGS.....ccvviveeieeeeiese et ee ettt e e saesnenre e 9
Improving System PerformManCe..........coueeeereieseneeeeeeese e 10
Chapter 3. 8051 Product LiNe.......ccceveeieiieiesie e 13
8051 Devel opment TOOI KitS.....cucveeiieeeeiereeeiestee e see ettt 13
Tool Kit ComMpPariSon Chartccceiieiiiieeieeeeeeeeeee e see e e e s s sre e snens 18
Chapter 4. 8051 Development TOOIS........ccccceveieeiereeeese e 19
8051 Microcontroller FamilYc.coeveiereree e 19
C51 Optimizing C Cross COMPIENccvieeerereeieeseeeeeere e e seeseeaeseesee e sre e e snens 21
AS5L MECIO ASSEMIBIEN ..ottt 38
BL51 Code Banking LiNKEr/LOCEONccceveriererersesesesesieseeseseseessessssressessessenses 40
OC51 Banked Object File CONVEITEccccueiieeiereereseseese e eneas 44
OHB51 ObJECt-HEX CONVENESeceeceeeeeeeeieeeesestee e e e sre e et srenne e 44
LIB51 Library Manager........cccouveeeeereeeeiseeeeseeeeseseeeeseessessessesssssessesssssessssssssessnns 44
ASCOPE-51 FOr WINAOWSc.veveieieeciesie ettt se e se s 45
MUVISION/5L fOr WINGOWS ..eevviieeeeiiiiie ettt et e e st e e e e e e e e e e s e s naeeeeeees 45
Chapter 5. Usingthe 8051 tO0IS.........ccceeiireeri e 47
Starting PVision and ASCOPEuuveriiiiiiiieeeie e e e e e e e e e aaaaeae s
MVISION IDE OVEIVIEWcccoiiiie ittt e e e e s s st e e e e e e e e e e e s e s s n e aeneeaeaaees 48
dScope Simulator/Debugger OVEIVIEW...........cccccuieiiiiieeiiee e ee e ae e e e 55
Y= 0] o1 1= o (oo |- V0 PSSR
HELLO: Your First 8051 C Programccccccvuiiiiiiiieieeeeeesesseesiniieineeeeeeeesseeesessnnnnnnns 66
MEASURE: A Remote Measurement SYStEMcuuviururuiiiiinieeeeeeeeeeeeeeeeeeeeenennnnnnnns 73
BADCODE: An Example with Syntax Errors...........occccviiiiiieiiiee e 89
Chapter 6. Hardwar e ProductSccccvciiievi e 91
ProROM EPROM EMUIALOTccoiiiiiiie ittt et 91
MCB517A EvValuation BOAIU.........ocvviiieiiiiiiiie ettt e e sibreee e e 92
MCB520 Evaluation BOAIUcccoiiiiiiiiiiiiiiiiee ittt et s sinaeee e 93
Chapter 7. Real-TimeKerNES. ... 95

RTX-51 Real-Time Operating SYStEM........ccouiiiiiiiiciieeeee e er e 95

Contents

Chapter 8. Command REFErenCecocvveeiiiieeeee e 107
ABL MECIO ASSEMDIEIS. ...ttt 108
(O I o071 o 11 = SRR 109
L51/BL5L LiNKEITLOCELONcueevieeeireeeesteeeieseeesieseeie e ese s nnens 111
OC51 Banked Object File CONVEITEcccooiiiiirerere e 113
OHB51 ObjeCt-HEX CONVEITES ...t sr e eaeas 113
LIB51 Library MaNnagErccccceererieriiniesie e siesie e sies et e e e e s e e enee s 113

Keil Software 8051 Demo Kit 1

Chapter 1. Introduction

Thank you for allowing Keil Software to provide you with software development
tools for the 8051 family of microcontrollers. With our tools, you can generate
embedded applications for the multitude of 8051 derivatives. Our 8051
development tools are listed below:

= Cb51 Optimizing C Cross Compiler,

= Ab51 Macro Assembler,

= 8051 Utilities (linker, object file converter, library manager),

= dScope for Windows™ Source-Level Debugger/Simulator,

= pVision for Windows™ Integrated Development Environment.

These tools are combined into the kits described in “Chapter 3. 8051 Product
Line” on page 13. The individual tools are described in detail in “Chapter 4.
8051 Development Tools” on page 19.

In addition to the above development tools, we also provide real-time kernels,
evaluation boards, and debugging hardware. Refer to “Chapter 7. Real-Time
Kernels” on page 95 and “Chapter 6. Hardware Products” on page 91 for more
information about these products. Our tools are designed for the professional
software developer, but any level of programmer can use them to get the most
out of the 8051 hardware.

Chapter 1. Introduction

Manual Topics

This manual discusses a number of topics including how to:

= Install the software on your system (see “Chapter 2. Installation” on page 5)
and fine tune it for maximum performance (see “Improving System
Performance” on page 10),

» Select the best tool kit for your application (see “Chapter 3. 8051 Product
Line” on page 13),

s Use the 8051 development tools (see “Chapter 4. 8051 Development Tools”
on page 19),

= Run the included sample programs (see “Chapter 5. Using the 8051 tools” on
page 47).

If you want to get started immediately, you may do so by installing the software
(refer to “Chapter 2. Installation” on page 5) and running the sample programs
(refer to “Chapter 5. Using the 8051 tools” on page 47). This is all you need to
do to begin using this Kit.

Evaluation and Demo Kits

Keil Software provides two kits that let you evaluate our tools.

The C51 Demo Kit includes demonstration versions of our tools. The tools in
the Demo Kit do not generate actual object code. They generate listing files
where you can see the code generated by the compiler and other tools.

The C51 Evaluation Kit includes evaluation versions of our tools. The tools in
the Evaluation Kit let you generate applications up to 2 Kbytes in size. You may
use this kit to evaluate the effectiveness of our tools and to generate small target
applications.

Both kits include this user’s guide and software. This user’s guide is also
included in each of our tool kits.

Keil Software 8051 Demo Kit

Types of Users

This manual addresses three types of users. evaluation users, new users, and
experienced users.

Evaluation User s are those users who have not yet purchased the software but
have requested the evaluation package to get a better feel for what the tools do
and how they perform. The evaluation package includes evaluation copies of the
development tools. Y ou may use the included sample programsto get real-world
experience with our 8051 development tools. Even if you are only a evaluation
user, take the time to read this manual. It explains how to install the software,
provides you with an overview of the development tools, and introduces the
sample programs.

New User s are those users who are purchasing our 8051 devel opment tools for
thefirst time. The included software provides you with the latest devel opment
tool versions as well as sample programs. If you are new to the 8051 or the
tools, take the time to review the sample programs described in this manual .
Thismanual provides aquick tutorial and helps new or inexperienced users
quickly get started with the tools.

Experienced Users are those users who have previously used our 8051
development tools and are now upgrading to the latest 8051 tools. The software
included with a product upgrade contains the latest devel opment tools, the
sample programs, and a full set of manuals.

Changes to the Documentation

Last minute changes and corrections to the software and manuals are listed in the
README.TXT filewhichisincluded in the root directory of your installation.
Take the timeto read thisfile to determine if there are any changes that may
impact your installation.

Chapter 1. Introduction

Requesting Assistance

We are dedicated to providing you with the best embedded devel opment tools
and documentation available. If you have suggestions or comments regarding
any of the printed manuals accompanying this product, please contact us. If you
think you have discovered a problem with the software, do the following before
calling technical support.

1. Read the sections in this manual that pertain to the job or task you are trying
to accomplish.

2. Make sure you are using the most current version of the software and utilities.

3. Isolate the problem to determineif it is a problem with the assembler,
compiler, linker, library manager, or another devel opment tool.

4. |solate software problems by reducing your code to afew lines.

If, after following these steps, you are still experiencing problems, report them to
our technical support group.

If you contact us by fax, be sure to include your name, your product serial
number and version number, and telephone numbers (voice and fax) where we
can reach you.

Try to be as detailed as possible when describing the problem you are having.
The more descriptive your example, the faster we can find asolution. 1f you
have a one-page code example demonstrating the problem, please fax it to us.

Keil Software 8051 Demo Kit

Chapter 2. Installation

This chapter explains how to setup an operating environment and how to install
the software on your hard disk. Before starting the installation program, you
must do the following:

= Veify that your computer system meets the minimum regquirements.

= Make acopy of theinstallation diskette for backup purposes.

NOTE

This chapter refersto various MS-DOS commands which may be used to

customize your operating environment. The SeT and PATH commands, for
example, are used to initialize environment variables used by the compiler and
utilities. If you are not familiar with these commands and other MS-DOS
operations mentioned in this chapter, please refer to your DOS user’s guide.

Chapter 2. Installation

System Requirements

There are minimum hardware and software requirements that must be satisfied to
ensure that the compiler and utilities function properly.

For our Windows-based tools, you must have the following:

= 100% IBM compatible 386 or higher PC,
= Windows 3.1 or higher,

= 4 MB RAM minimum,

s Hard disk with 6 MB free disk space.

For our DOS-based tools, you must have the following:

= 100% IBM compatible 386 or higher PC with 640 KB RAM,
= MSDOSVersion 3.1 or higher,
s Hard disk with 6 MB free disk space.

The C compiler and utilities require that you have at least 20 files and 20 buffers
defined in your conrig.sys file. Additionally, you need enough environment
space for the environment variables used by the compiler and utilities (see
“Environment Settings” on page 9).

Your conrig.svs file should look similar to the following:

BUFFERS=20
FI LES=20
SHELL=C: \ COWWAND. COM / e: 1024 /p

If you receive the messagmit of environnment space from DOS, you can
increase the amount of environment space by increasing the nuogzerin the
above example. Refer to your DOS user’s guide for more information.

Keil Software 8051 Demo Kit

Backing Up Your Disks

We strongly suggest that you make a backup copy of the installation diskettes
using the DOS copy or bpiskcopy commands. Then, use the backup disksto
install the software. Be sureto store the original disksin a safe place in case
your backups are lost or damaged.

Installing the Software

All of our products come with an installation program which allows easy
installation of our software.

Installing DOS-Based Products

To install DOS-based products, insert the first product diskette into Drive A and
enter the following command line at the DOS prompt:

A: | NSTALL

Then, follow the instructions displayed by the installation program.

Installing Windows-Based Products

To install Windows-based products...

= Insert the first product diskette into Drive A,

n Select theRun... command from the File menu in the Program Manager,
s Enter A:SETUP at the Command Line prompt,

= Select the OK button.

Then, follow the instructions displayed by the installation program.

Chapter 2. Installation

Directory Structure

The installation program copies the development tools into subdirectories of the
following base directories. The directory used depends on the kit being
installed.

Directory Description
\C51 8051 development tools.
\C51EVAL 8051 evaluation tools.

After creating the appropriate directory, the installation program copies the
development tools into the subdirectories listed in the following table.

Subdirectory Description

...\ASM Assembler include files.

...\BIN Executable files.

...\DS51 dScope-51 for DOS IOF drivers.
...\EXAMPLES Sample applications.

..\RTX51 RTX-51 Full files.

LARTXCTINY RTX-51 Tiny files.

..\INC C compiler include files.

...\LIB C compiler library files and startup code.
...\MON51 Target monitor files.

..\TS51 tScope-51 for DOS IOT drivers.

Thistable lists a complete installation that includes the entire line of 8051 development
tools. Your installation may vary depending on the products you purchased.

Keil Software 8051 Demo Kit

Environment Settings

The compiler and utilities require entries in the DOS environment table that
specify the path to include files and libraries. In addition, you must include the
.\BIN\ directory inyour PATH.

The following table lists the environment variables, their default paths, and a
brief description.

Variable Path Description

PATH \C51\BIN Specifies the path of the 8051 development tools.

PATH \C51EVAL\BIN Specifies the path of the 8051 evaluation tools.

TMP Specifies the path for temporary files generated. For best

performance, the path specified should be a RAM disk. If this
environment variable is specified, the path must exist. If the
path does not exist, the tools abort reporting a fatal error.

C51INC \C51\INC Specifies the path where the standard C51 compiler include
files are located.

C51LIB \C51\LIB Specifies the path where the standard C51 compiler library files
are located.

NOTE

This manual makes references to programs and filesin the \csi\... directory.
Thisdirectory is equivalent to the \csievaL\... directory.

Typicaly, environment settings are automatically installed in your
AUTOEXEC.BAT file by the installation program. If you wish to put these settings
in a separate batch file, the environment settings must be entered as follows:

8051 Development Tools 8051 Evaluation Tools
PATH=C:\ C51\BIN; . . . PATH=C: \ C51EVAL\BIN; . . .
SET C511 NC=C:\ C51\ | NC SET C511 NC=C: \ C51EVAL\ | NC

SET C51LIB=C:\ C51\LIB SET C51LIB=C:\ C51EVAL\LI B

Chapter 2. Installation

Improving System Performance

There are two methods you can employ to improve performance of the C51
compiler and utilities. These techniques are generic and should help boost
performance of most applications. Y ou may:

= ProvideaRAM disk for the compiler and utilities to use for temporary files,

s Useadisk cache to store the most recently accessed disk files.

Using a RAM Disk

If your computer has sufficient extended or expanded memory available, you
should consider using aRAM disk. A RAM disk isamemory-based disk
emulator. Because the contents of aRAM disk are stored in RAM, accessis
very fast.

If you are using aRAM disk, you can set the value of the TmP environment
variables to the drive name of the RAM disk. This speeds up the execution of
the many of the tools and utilities because they can use the RAM disk for
temporary files.

A number of RAM disk software packages are available. RAMDRIVE.sYs and
vDIsK.sys arethe names of the RAM disk programs that are most commonly
shipped with DOS. Refer to your DOS manual to learn how to install these
programs.

Keil Software 8051 Demo Kit 11

Using a Disk Cache

A disk cache utilizes alarge memory pool to temporarily store information read
from disk. When the computer accesses the disk, it first checks the cache to see
if the desired information is already in the cache. If itis, theinformation is read
from the cache memory instead of from the disk. Thisissignificantly faster than
waiting for the disk drive to read the information.

Typically, software development involves an edit-compile-edit-compile... cycle.
In these situations, a disk cache improves the performance of your editor,
assembler, compiler, and linker. The editor, the compiler, source file, and object
file can all be held in the cache, and disk accesses are kept to a minimum.

Version 5.0 and Version 6.0 of MS-DOS both come with a disk-caching utility
called smarTDRv.SYS. Refer to your DOS manual to learn how to install and use
this program.

12

Chapter 2. Installation

Keil Software 8051 Demo Kit 13

Chapter 3. 8051 Product Line

Keil Software provides the premier 8051 development toolsin the industry. To
help you become familiar with how we distribute our tools, we would like to
introduce the concept of atool kit.

A tool kit is comprised of several application programs that you use to create
your 8051 application. Y ou may use an assembler to assemble your 8051
assembly program, you may use a compiler to compile your C source code into
an object file, and you may use alinker to create an absolute object module
suitable for your in-circuit emulator.

While it makes little sense to have a compiler without alinker, it also makes
little sense to have a linker without a compiler or assembler. Therefore, our
tools are packaged into various kits.

Our 8051 kits are described below in the “8051 Development Tool Kits” section.

8051 Development Tool Kits

When you use the Keil Software tools, the 8051 project development cycle is
roughly the same as for any software development project.

1. Create source files in C or assembly.

2. Compile or assemble source files.

3. Correct errors in source files.

4. Link object files from compiler and assembler.

5. Test linked application.

Tool Kit Overview

The development cycle described above may be best illustrated by a block
diagram of the complete 8051 tool set.

14

Chapter 3. 8051 Product Line

Asshownin thisfigu_re, filesare uVision/51
created by the pVision/51 IDE and
then passed to the C51 compiler or

A51 assembler. The compiler and
assembler process source files and C51_ A51 Macro
create relocatable object files. Compiler Assembler

Obiject files created by the compiler
and assembler may be used by the
LIB51 library manager to create a) C
library. A library is a specially Library
formatted, ordered program collection

of object modules that the linker can Y

process. When the linker processes 8151 Linker for Code-Banking
library, only the object modules in the
library that are necessary for program

creation are used. dScope-51 Emulator &

Source Leve -Debugger PROM Programmer

RTX51

Real-Time
Operating
System

LIB51

Library
Manager

Object files created by the compiler
and assembler and library files create
by the library manager are processed
by the linker to create an absolute
object module. An absolute object file
or module is an object file with no relocatable code. All the code in an absolute
object file resides at fixed locations.

CPU &

Peripheral
Simulator

Monitor-51

Target Debugging

The absolute object file created by the linker may be used to program EPROM or
other memory devices. The absolute object module may also be used with the
dScope-51 debugger/simulator or with an in-circuit emulator.

The dScope-51 source level debugger/simulator is ideally suited for fast, reliable
high-level-language program debugging. The debugger contains a high-speed
simulator and a target debugger that let you simulate an entire 8051 system
including on-chip peripherals. By loading specific I/O drivers, you can simulate
the attributes and peripherals of a variety of 8051 derivatives. In conjunction
with Monitor-51, the debugger is even able to do source-level debugging on your
target hardware.

The RTX-51 real-time operating system is a multitasking kernel for the 8051
family. The RTX-51 real-time kernel simplifies the system design,
programming, and debugging of complex applications where fast reaction to
time critical events is essential. The kernel is fully integrated into the C51
compiler and is easy to use. Task description tables and operating system
consistency are automatically controlled by the BL51 code banking
linker/locator.

Keil Software 8051 Demo Kit 15

Tool Kit Introduction

The preceding diagram shows the full extent of the Keil Software 8051

development tools. Thetools listed in this diagram comprise the professional
developer’s kit described on the following pages. In addition to the professional
kit, Keil Software provides a number of other tool kits for the 8051 developer.
To best illustrate what is included in each tool kit, we describe the kits in
decreasing order of capability. The most capable kit, the professional
developer’s kit is described first.

PK51-C51 Professional Developer’s Kit

The PK51 C51 professional developer’s kit includes everything the professional
8051 developer needs to create sophisticated embedded applications. This tool
kit includes the following components:

= C51 Optimizing C Compiler,

= A51 Macro Assembler,

= BL51 Code Banking Linker/Locator,

= OC51 Banked Object File Converter,

= OH51 Object-Hex Converter,

= LIB51 Library Manager,

= dScope-51 Simulator/Debugger,

= tScope-51 Target Debugger,

= Monitor-51 ROM Monitor and Terminal Program,

= Integrated Development Environment,

= RTX-51 Tiny Real-Time Operating System.

In addition, the professional developer’s kit includes the following tools for
Windows users:
= dScope-51 Simulator/Debugger for Windows,

= MVision/51 Integrated Development Environment for Windows.

The professional developer’s kit can be configured for all 8051 derivatives. The
tools included in this kit run under DOS on any 100% IBM PC 386 or higher
compatible computer.

Chapter 3. 8051 Product Line

DK51-C51 Developer’s Kit

The DK51 C51 developer’s kit is designed for users who need a complete DOS-
based development system for the 8051. This kit lets you create sophisticated
embedded applications using a DOS-based development platform. This tool kit
includes the following components:

s C51 Optimizing C Compiler,

s Ab1 Macro Assembler,

= BL51 Code Banking Linker/Locator,

= OC51 Banked Object File Converter,

s OH51 Object-Hex Converter,

s LIB51 Library Manager,

= dScope-51 Simulator/Debugger,

» tScope-51 Target Debugger,

= Monitor-51 ROM Monitor and Terminal Program,

= Integrated Development Environment.

The developer’s kit can be configured for all 8051 derivatives. The tools
included in this kit run under DOS on any 100% compatible IBM PC 386 or
higher computer.

CA51-C51 Compiler Kit

The CA51 C51 compiler kit is the best choice for developers who need a C
compiler but not a debugging system. This kit lets you create 8051 C
applications for your target hardware. The compiler kit can be configured for all
8051 derivatives. The tools included in this kit run under DOS on any 100%
compatible IBM PC 386 or higher computer.

Keil Software 8051 Demo Kit 17

A51-A51 Macro Assembler Kit

The A51 assembler kit includes our 8051 assembler and all the utilities you need
to begin creating 8051 application. The assembler kit is easily configured for all
8051 derivatives. Thetoolsincluded in thiskit run under DOS on any 100%
compatible IBM PC 386 or higher computer.

DS51-dScope-51 Simulator Kit

The DS51 simulator kit provides a debugger/simulator for use with the A51
assembler kit and the CA51 compiler kit. With thiskit, you can quickly locate
problems in your 8051 application because the simulator lets you step through
your code one instruction at atime. You can easily view program variables,
SFRs, and memory locations. Thistool kit includes the following components:

= dScope-51 Simulator/Debugger,

» tScope-51 Target Debugger,
= Monitor-51 ROM Monitor and Terminal Program.

The simulator kit comes with drivers for most popular 8051 derivatives. The
toolsincluded in thiskit run under DOS on any 100% compatible IBM PC 386
or higher computer.

FR51-RTX-51 Full Real-Time Kernel

The RTX-51 Full kernel is areal-time operating system for the 8051
microcontroller. RTX-51 Full provides a superset of the features found in RTX-
51 Tiny and also includes BITBUS and CAN communication protocol interface
libraries. Refer to “Chapter 7. Real-Time Kernels” on page 95 for more
information about RTX-51 Tiny.

Chapter 3. 8051 Product Line

Tool Kit Comparison Chart

The following table provides a check list of the features found in each of our
development kits. Part numbers are listed across the top and features are listed
down the side. Usethis cross reference to select the kit that best suits your
needs.

Support PK51 DK51 | A51
v v v

8051

Assembler v

Compiler

Simulator
IDE
RTX

SN S

Windows

DOS

SN NU I N N I N N RN

Keil Software 8051 Demo Kit 19

Chapter 4. 8051 Development Tools

This chapter discusses the features and advantages of the 8051 microprocessor
family and the development tools available from Keil Software. We have
designed our development toolsto help you quickly and successfully complete
your job. For thisreason, our tools are easy to use and are guaranteed to help
you achieve your design goals.

8051 Microcontroller Family

The 8051 has been available since the early 1980’s. With a wide variety of
outstanding features and peripherals, the 8051 CPU core is destined to see
service well into the next century. More than 200 different 8051 derivatives are
available today from a variety of chip vendors. More than half of all embedded
projects with a CPU use members of the 8051 microcontroller family. As an
embedded processor, the 8051 has no equal.

A typical 8051 family member contains the 8051 CPU core, data memory, code
memory, and some versatile peripheral functions. A flexible memory interface
lets you expand the capabilities of the 8051 using standard peripherals and
memory devices.

20

Chapter 4. 8051 Development Tools

8051 Development Tools

Keil Software provides the following development tools for the 8051

C51 Optimizing C Compiler (see page 21),

A51 Macro Assembler (see page 38),

BL51 Code Banking Linker/Locator (see page 40),
OC51 Banked Object File Converter (see page 44),
OH51 Object-Hex Converter (see page 44),

LIB51 Library Manager (see page 44)

dScope-51 for Windows (see page 45),

MVision/51 for Windows (see page 45).

For information on the products which include these tools, refer to “Chapter 3.
8051 Product Line” on page 13.

NOTE

All of our 8051 tools utilize the Intel OMF51 object module format. The
development environment can be expanded with all Intel compatible tools such
as Intel PL/M-51 or iDCX-51 and with emulators from a wide range of
manufactures.

Keil Software 8051 Demo Kit 21

C51 Optimizing C Cross Compiler

The C programming language is a general -purpose programming language that
provides code efficiency, elements of structured programming, and arich set of
operators. Cisnot a big language and is not designed for any one particular area
of application. Its generality, combined with its absence of restrictions, make C
a convenient and effective programming solution for awide variety of software
tasks. Many applications can be solved more easily and efficiently with C than
with other more specialized languages.

The Keil Software C51 optimizing cross compiler for the MS-DOS operating
system is a complete implementation of the ANSI (American National Standards
Institute) standard for the C language. The C51 compiler generates code for the
8051 microprocessor but is not a universal C compiler adapted for the 8051
target. Itisaground-up implementation dedicated to generating extremely fast
and compact code for the 8051 microprocessor.

For most 8051 applications, the C51 compiler gives software devel opers the
flexibility of programming in C while matching the code efficiency and speed of
assembly language.

Using a high-level language like C has many advantages over assembly language
programming. For example:

= Knowledge of the processor instruction set is not required. A rudimentary
knowledge of the 8051’'s memory architecture is desirable but not necessary.

= Register allocation and addressing mode details are managed by the compiler.

= The ability to combine variable selection with specific operations improves
program readability.

s Keywords and operational functions that more nearly resemble the human
thought process can be used.

= Program development and debugging times are dramatically reduced when
compared to assembly language programming.

= The library files that are supplied provide many standard routines (such as
formatted output, data conversions, and floating-point arithmetic) that may be
incorporated into your application.

= EXxisting routine can be reused in new programs by utilizing the modular
programming techniques available with C.

s The C language is very portable and very popular. C compilers are available
for almost all target systems. Existing software investments can be quickly
and easily converted from or adapted to other processors or environments.

22

Chapter 4. 8051 Development Tools

C51 Language Extensions

The C51 compiler isan ANSI compliant C compiler and includes all aspects of
the C programming language that are specified by the ANS| standard. A number
of extensions to the C programming language are provided to support the
facilities of the 8051 microprocessor. The C51 compiler includes extensions for:
= DataTypes,

= Memory Types,

= Memory Models,

= Pointers,

= Reentrant Functions,

= Interrupt Functions,

= Real-Time Operating Systems,

= Interfacing to PL/M and A51 source files.

The following sections briefly describe these extensions.

Keil Software 8051 Demo Kit 23

Data Types

The C51 compiler supports the data types listed in the following table. In
addition to these scalar types, variables can be combined into structures, unions,
and arrays. Except as hoted, you may use pointers to access these data types.

Data Type Bits Bytes Value Range ‘
bit T 1 Oto1l

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 16 2 -32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647
unsigned long 32 4 0 to 4294967295

float 32 4 +1.175494E-38 to +£3.402823E+38
shit T 1 Oto1l

sfr 1 8 1 0 to 255

sfri6 T 16 2 0 to 65535

T Thebit, sbit, sfr, andsfr 16 data types are specific to the 8051 hardware and the C51 compiler.
The are not a part of ANSI C and cannot be accessed through pointers.

The sbit, sfr, and sfr 16 data types are included to alow accessto the special
function registersthat are available on the 8051. For example, the declaration:
sfr PO = 0x80; declaresthevariable PO and assignsit the special function
register address of 0x80. Thisisthe address of PORT 0 on the 8051.

The C51 compiler automatically converts between data types when the result
implies adifferent datatype. For example, abit variable used in an integer
assignment is converted to an integer. You can, of course, coerce a conversion
by using atype cast. In addition to data type conversions, sign extensions are
automatically carried out for signed variables.

24

Chapter 4. 8051 Development Tools

Memory Types

The C51 compiler supports the architecture of the 8051 and its derivatives and
provides access to all memory areas of the 8051. Each variable may be
explicitly assigned to a specific memory space.

Memory Type Description ‘

code Program memory (64 Kbytes); accessed by opcode MOVC
@A+DPTR.

data Directly addressable internal data memory; fastest access to
variables (128 bytes).

idata Indirectly addressable internal data memory; accessed across the
full internal address space (256 bytes).

bdata Bit-addressable internal data memory; allows mixed bit and byte
access (16 bytes).

xdata External data memory (64 Kbytes); accessed by opcode MOVX
@DPTR.

pdata Paged (256 bytes) external data memory; accessed by opcode
MOVX @Rn.

Accessing the internal data memory is considerably faster than accessing the
external data memory. For thisreason, you should place frequently used
variablesin internal data memory and less frequently used variablesin external
data memory.

By including a memory type specifier in the variable declaration, you can specify
where variables are stored.

Aswith the signed and unsigned attributes, you may include memory type
specifiersin the variable declaration. For example:

char data varl;

char code text[] = "ENTER PARAMETER: ";
unsi gned | ong xdata array[100];

float idata x,y, z;

unsi gned int pdata di nension;

unsi gned char xdata vector[10][4][4];
char bdata fl ags;

If the memory type specifier is omitted in a variable declaration, the default or
implicit memory type is automatically selected. Function arguments and
automatic variables which cannot be located in registers are also stored in the
default memory area.

The default memory type is determined by the SMALL, COMPACT and
L ARGE compiler control directives. These directives specify the memory
model to use for the compilation.

Keil Software 8051 Demo Kit

25

Memory Models

The memory model determines the default memory type used for function
arguments, automatic variables, and variables declared with no explicit memory
type. You specify the memory model on the command line using theSMALL,
COMPACT, and LARGE control directives. By explicitly declaring avariable
with amemory type specifier, you may override the default memory type.

SMALL

COMPACT

LARGE

In thismodel, al variables default to the internal data memory of
the 8051. Thisisthe same asif they were declared explicitly
using the data memory type specifier. In this memory model,
variable accessis very efficient. However, all data objects, as
well as the stack must fit into the internal RAM. Stack sizeis
critical because the stack space used depends upon the nesting
depth of the various functions. Typically, if the BL51 code
banking linker/locator is configured to overlay variablesin the
internal data memory, the small model isthe best model to use.

Using compact model, all variables default to one page of
external data memory. Thisisthe same asif they were
explicitly declared using the pdata memory type specifier. This
memory model can accommodate a maximum of 256 bytes of
variables. The limitation is due to the addressing scheme used,
which isindirect through registers RO and R1. This memory
mode! is not as efficient as the small model, therefore, variable
accessisnot asfast. However, the compact model is faster than
the large model. The high byte of the addressis usually set up
viaport 2. The compiler does not set this port for you.

In large model, all variables default to external data memory.
Thisisthe same asif they were explicitly declared using the
xdata memory type specifier. The data pointer (DPTR) is used
for addressing. Memory access through this data pointer is
inefficient, especially for variables with alength of two or more
bytes. Thistype of data access generates more code than the
small or compact models.

NOTE

You should always use the SMALL memory model. It generates the fastest,
tightest, and most efficient code. You can always explicitly specify the memory
area for variables. Move up in model size only if you are unable to make your
application fit or operate using SMALL model.

26

Chapter 4. 8051 Development Tools

Pointers

The C51 compiler supports pointer declarations using the asterisk character

(*"). You may use pointers to perform all operations available in standard C.
However, because of the unique architecture of the 8051 and its derivatives, the
C51 compiler supports two different types of pointers: memory specific pointers
and generic pointers.

Generic Pointers

Generic pointers are declared in the same way as standard C pointers. For
example:

char *s; /* string ptr */
int *nunptr; /* int ptr */
long *state; /* long ptr */

Generic pointers are always stored using three bytes. The first byte is for the
memory type, the second is for the high-order byte of the offset, and the third is
for the low-order byte of the offset.

Generic pointers may be used to access any variable regardless of its location in
8051 memory space. Many of the library routines use these pointer types for this
reason. By using these generic untyped pointers, a function can access data
regardless of the memory in which it is stored.

Keil Software 8051 Demo Kit 27

Memory Specific Pointers

Memory specific pointers aways include a memory type specification in the
pointer declaration and always refer to a specific memory area. For example:

char data *str; /* ptr to string in data */
int xdata *nunt ab; /* ptr to int(s) in xdata */
| ong code *pow ab; /* ptr to long(s) in code */

Because the memory typeis specified at compile-time, the memory type byte
required by untyped pointersis not needed by typed pointers. Typed pointers
can be stored using only one byte (idata, data, bdata, and pdata pointers) or
two bytes (code and xdata pointers).

Comparison: Memory Specific & Generic Pointers
You can significantly accelerate an 8051 C program by using ‘memory specific’

pointers. The following sample program shows the differences in code & data
size and execution time for various pointer declarations.

Description Idata Pointer Xdata Pointer Generic Pointer
Sample Program char idata *ip; char xdata *xp; char *p;
char val ; char val ; char val ;
val = *ip; val = *xp; val = *p;
8051 Program Code MOV RO, ip MOV DPL, xp +1 MOV Rl,p + 2
Generated MOV val , @RO MOV DPH, xp MV R2,p + 1
MOV A @PTR MV R3, p
MOV val, A CALL CLDPTR
Pointer Size 1 byte data 2 bytes data 3 bytes data
Code Size 4 bytes code 9 bytes code 11 bytes code + Lib.
Execution Time 4 cycles 7 cycles 13 cycles

28

Chapter 4. 8051 Development Tools

Reentrant Functions

A reentrant function can be shared by several processes at the sametime. When
areentrant function is executing, another process can interrupt the execution and
then begin to execute that same reentrant function. Normally, C51 functions
cannot be called recursively or in afashion which causes reentrancy. The reason
for this limitation is that function arguments and local variables are stored in
fixed memory locations. The reentrant function attribute allows you to declare
functions that may be reentrant and, therefore, may be called recursively. For
example:

int calc (char i, int b) reentrant

{

int x;

x = table [i];
return (x * b);

}

Reentrant functions can be called recursively and can be called simultaneously
by two or more processes. Reentrant functions are often required in real-time
applications or in situations where interrupt code and non-interrupt code must
share afunction.

For each reentrant function, areentrant stack areais ssmulated in internal or
external memory depending on the memory model.

NOTE

By selecting the reentrant attribute on a function by function basis, you can
select the use of this attribute where it's needed without making the entire
programreentrant. Making an entire program reentrant may cause it to be
larger and consume more memory.

Keil Software 8051 Demo Kit

29

Interrupt Functions

The C51 compiler provides you with a method of calling a C function when an
interrupt occurs. This support allows you to create interrupt service routinesin
C. You need only be concerned with the interrupt number and register bank
selection. The compiler automatically generates the interrupt vector and entry
and exit code for the interrupt routine. The interrupt function attribute, when
included in a declaration, specifies that the associated function is an interrupt
function. Additionally, you can specify the register bank used for that interrupt
with the using function attribute.

unsi gned int interruptcnt;
unsi gned char second;

void tinerO (void) interrupt 1 using 2 {

if (++interruptcnt == 4000) { /* count to 4000 */
second++; /* second counter */
interruptcnt = O; /* clear int counter */

}
}

Parameter Passing

The C51 compiler passes up to three function argumentsin CPU registers. This
significantly improves system performance since arguments do not have to be
written to and read from memory. Argument passing can be controlled with the
REGPARM S and NOREGPARM S control directives.

The following table lists the registers used for different arguments and data
types.

Argument char, int, long, generic
Number 1-byte pointer 2-byte pointer float pointer
1 R7 R6 & R7 R4 - R7 R1-R3

2 R5 R4 & R5

3 R3 R2 & R3

If no registers are available for argument passing or too many arguments are
involved, fixed memory locations are used for those extra arguments.

30

Chapter 4. 8051 Development Tools

Function Return Values

CPU registers are always used for function return values. The following table
lists the return types and the registers used for each.

Return Type Register ’ Description ‘
bit Carry Flag
char, unsigned char, 1-byte pointer R7
int, unsigned int, 2-byte pointer R6 & R7 MSB in R6, LSB in R7
long, unsigned long R4 - R7 MSB in R4, LSB in R7
float R4 - R7 32-Bit IEEE format
generic pointer R1-R3 Memory type in R3, MSB R2, LSB
R1

Register Optimizing

Depending on program context, the C51 compiler allocates up to 7 CPU registers
for register variables. Any registers modified during function execution are
noted by the C51 compiler within each module. The linker/locator generates a
global, project-wide register file which contains information of all registers
altered by external functions. Consequently, the C51 compiler knows the
register used by each function in an application and can optimize the CPU
register allocation of each C function.

Real-Time Operating System Support

The C51 compiler integrates well with both the RTX-51 Full and RTX-51 Tiny
multitasking real-time operating systems. The task description tables are

generated and controlled during the link process. For more information about

the RTX real-time operating systems, refer to “Chapter 7. Real-Time Kernels”
on page 95.

Keil Software 8051 Demo Kit 31

Interfacing to Assembly

Y ou can easily access assembly routines from C and vice versa. Function
parameters are passed via CPU registers or, if the NOREGPARM S control is
used, viafixed memory locations. Values returned from functions are always
passed in CPU registers.

Y ou can use the SRC directive to direct the C51 compiler to generate afile
ready to assemble with the A51 assembler instead of an object file. For example,
the following C sourcefile:

unsi gned int asnfuncl (unsigned int arg){
return (1 + arg);

}

generates the following assembly output file when compiled using the SRC
directive.

?PR?_asnf unc1?ASML SEGVENT CCDE

PUBLI C _asnfuncl
RSEG ?PR?_asnf unc1?ASML
USI NG 0

_asnfuncl:

; - Variable 'arg?00’ assigned to Register 'R6/R7" ----
MOV A R7 ; load LSB of the int
ADD A #01H ; add 1
MV R7,A ; put it back into R7
CLR A
ADDC A R6 ; add carry & R6
MOV R6, A

?C0001:
RET ; return result in R6/R7

Y ou may use the #pragma asm and #pragma endasm preprocessor directives
to insert assembly instructionsinto your C source code.

Interfacing to PL/M-51

Intel's PL/M-51 is a popular programming language that is similar to C in many
ways. You can easily interface routines written in C to routines written in PL/M-
51. You can access PL/M-51 functions from C by declaring them witdl e
function type specifier. All public variables declared in the PL/M-51 module are
available to your C programs. For example:

extern alien char plmfunc (int, char);

Since the PL/M-51 compiler and the Keil Software tools all generate object files
in the OMF51 format, external symbols are resolved by the linker.

32

Chapter 4. 8051 Development Tools

Code Optimizations

The C51 compiler is an aggressive optimizing compiler. This meansthat the
compiler takes certain steps to ensure that the code generated and output to the
object fileisthe most efficient (smaller and/or faster) code possible. The
compiler analyzes the generated code to produce the most efficient instruction
sequences. This ensures that your C program runs as quickly and effectively as
possible in the least amount of code space.

The C51 compiler provides six different levels of optimizing. Each increasing
level includes the optimizations of levels below it. Thefollowingisalist of al
optimizations currently performed by the C51 compiler.

General Optimizations

= Constant Folding: Several constant values occurring in an expression or
address calculation are combined as a single constant.

= Jump Optimizing: Jumps are inverted or extended to the final target address
when the program efficiency is thereby increased.

= Dead Code Elimination: Code which cannot be reached (dead code) is
removed from the program.

= Register Variables: Automatic variables and function arguments are located
in registers whenever possible. No data memory space is reserved for these
variables.

= Parameter Passing Via Registers: A maximum of three function arguments
can be passed in registers.

= Global Common Subexpression Elimination: Identical subexpressions or
address calculations that occur multiple timesin afunction are recognized
and calculated only once whenever possible.

Keil Software 8051 Demo Kit

33

8051-Specific Optimizations

Peephole Optimization: Complex operations are replaced by simplified
operations when memory space or execution time can be saved as a resullt.

Access Optimizing: Constants and variables are computed and included
directly in operations.

Data Overlaying: Data and bit segments of functions are identified as
OVERLAYABLE and are overlaid with other data and bit segments by the
BL51 code banking linker/locator.

Case/Switch Optimizing: Depending upon their number, sequence, and
location, switch and case statements can be further optimized by using a
jump table or string of jumps.

Options for Code Generation

OPTIMIZE(SIZE): Common C operations are replaced by subprograms.
Program code size is reduced at the expense of program speed.

OPTIMIZE(SPEED): Common C operations are expanded in-line.
Program speed is increased at the expense of code size.

NOAREGS: The C51 compiler no longer uses absolute register access.
Program code is independent of the register bank.

NOREGPARMS: Parameter passing is always performed in local data
segments rather then dedicated registers. Program code created with this
#pragmais compatible to earlier versions of the C51 compiler, the PL/M-51
compiler, and the ASM-51 assembler.

34

Chapter 4. 8051 Development Tools

Global Register Optimization

The C51 compiler provides support for application wide register optimization
which is aso known as application register coloring. The following sample
program compares the code generated by C51 version 5.0 using application
register coloring to the code generated by C51 version 3.4 without application
register coloring. With the application wide register optimization, the C
compiler knows the registers used by external functions. Registers that are not
atered in external functions are used for register variables. The generated code
needs less data and code space and executes faster. In the following example
input and output are external functions, which require only afew registers.

main () {
unsigned char i;
unsigned char a;
while (1) {
i = input (); /* get number of values */
?C0001: ?C0001:
LCALL i nput LCALL i nput
"i' assigned to 'R6’ - MoV DPTR, #i
MoV R6, AR7 MoV A R7
MoV @PTR, A
do {
a = input (); /* get input value */
?C0005: ?C0005:
LCALL i nput LCALL i nput
;- 'a assigned to 'R7' - MoV DPTR, #a
MoV R5, AR7 MoV A R7
MOVX @PTR, A
output (a); /* output value */
LCALL _out put LCALL _out put
} while (--i); /* decrement values */
DINZ R6, ?C0005 MoV DPTR, #i
MOVX A, @PTR
DEC A
MOVX @PTR, A
INZ ?C0005
}
SIMP ?C0001 SIMP ?C0001

Keil Software 8051 Demo Kit 35

Debugging

The C51 compiler uses the Intel Object Format (OMF51) for object files and
generates complete symbol information. Additionally, the compiler can include
al the necessary information such as; variable names, function names, line
numbers, and so on to allow detailed and thorough debugging and analysis with
dScope-51 or Intel compatible emulators. All Intel compatible emulators may be
used for program debugging. In addition, the OBJECTEXTEND control
directive embeds additional variable type information in the object file which
allows type-specific display of variables and structures when using certain
emulators. You should check with your emulator vendor to determineif it is
compatible with the Intel OMF51 object module format and if it can accept Kell
object modules.

36

Chapter 4. 8051 Development Tools

Library Routines

The C51 compiler includes seven different ANSI compile-time libraries which
are optimized for various functional requirements.

Library File Description ‘
C51S.LIB Small model library without floating-point arithmetic

C51FPS.LIB Small model floating-point arithmetic library

C51C.LIB Compact model library without floating-point arithmetic

C51FPC.LIB Compact model floating-point arithmetic library

C51L.LIB Large model library without floating-point arithmetic

C51FPL.LIB Large model floating-point arithmetic library

80C751.LIB Library for use with the Philips 8xC751 and derivatives.

Source code is provided for library modules that perform hardware-related 1/0
andisfoundinthe \cs1\LIB directory. Y ou may use these source filesto help
you quickly adapt the library to perform 1/0O using any 1/O device in your target.

Intrinsic Library Routines

The libraries included with the compiler include a number of routines that are
implemented as intrinsic functions. Non-intrinsic functions generate ACALL or
LCALL instructionsto perform the library routine. Intrinsic functions generate
in-line code (which is faster and more efficient) to perform the library routine.

Intrinsic Function Description

crol Rotate character left.

cror Rotate character right.

irol Rotate integer left.

iror Rotate integer right.

lrol Rotate long integer left.

lror Rotate long integer right.

nop No operation (8051 NOP instruction).
testbit Test and clear bit (8051 JBC instruction).

Listing File Example

The C51 compiler produces alisting file that contains source code, directive
information, an assembly listing, and a symbol table.

Keil Software 8051 Demo Kit

C51 COWPI LER V5. 02, SAWVPLE 07/01/95 08:00:00 PAGE 1 The C51 Comp“er produces a

listing file with page numbers

DOS C51 COWPI LER V5. 02, COWPI LATI ON OF MODULE SAMPLE as well as time and date of

OBJECT MODULE PLACED I N SAMPLE. OBJ

COVPI LER | NVOKED BY: C:\ C51\ BI N\ C51. EXE SAVPLE. C CODE the compilation. Remarks
about the compiler invocation
stnt |evel source and object file output are
1 #include <reg51.h> /* SFR definitions for 8051 */ displayed in this listing.
2 #include <stdio.h> /* standard i/o definitions */
3 #i nclude <ctype.h> /* defs for char conversion */
4
2 #define EOT Ox1A /* Control +Z signals EOT */ The listing includes a line
7 void main (void) { number for each statement
8 1 unsi gned char c; and a nesting level for each
9 1 block enclosed within curly
0 1 /* setup serial port hdw (2400 Baud @2 MHz) */ braces (‘{" and }).
11 1 SCON = 0x52; /* SCON */
12 1 TMOD = 0x20; /* TMOD */
13 1 TCON = 0x69; /* TCON */
14 1 THL = OxF3; /[* THL */
15 1 Error'messages and
16 1 while ((c = getchar ()) != EOF) { warning messages are
17 2 putchar (toupper (c)); included in the listing file.
18 2
19 1 PO = 0; /* clear Qutput Port to signal ready */
20 1 }

ASSEMBLY LI STI NG OF GENERATED OBJECT CODE

; FUNCTI ON rmai n (BEG N)

: SOURCE LINE # 7 The CODE compiler option
; SOURCE LINE # 11 includes an assembly code
0000 759852 MoV SCON, #052H listing in the listing file.
; SOURCE LINE # 12 Source line numbers are
0003 758920 MOV TMOD, #020H — embedded within the
0006 758869 MOV TCON, #069H generated code.
; SOURCE LINE # 14
0009 758DF3 MoV TH1, #0F3H
000C ?C0001:
; SOURCE LINE # 16
000C 120000 E LCALL get char
000F 8F00 R MoV c, R7
0011 EF MoV A R7
0012 F4 CPL A
0013 6008 Jz ?C0002
; SOURCE LINE # 17
0015 120000 E LCALL _toupper
0018 120000 E LCALL _put char
; SOURCE LINE # 18
001B B80EF SIWP ?C0001
001D ?C0002:
; SOURCE LINE # 19
001D E4 CLR A
001E F580 MoV PO, A
; SOURCE LINE # 20
0020 22

RET
: FUNCTI ON rmai n (END)

MODULE | NFORVATI ON: STATI C OVERLAYABLE

S| ZE = — A memory overview provides

CONSTANT SIZE = ---- ! !
XDATA S| ZE = .- - information about the 8051
PDATA S| ZE = - - memory areas that are used.
DATA S| ZE B PR 1
| DATA SI ZE =
BI T SI ZE =

21D ©F WOPULE ARG O The total number of errors

and warnings is stated at
C51 COMPI LATI ON COVPLETE. 0 WARNING(S), 0 ERROR(S) the end of the listing file.

38

Chapter 4. 8051 Development Tools

A51 Macro Assembler

The A51 assembler is a macro assembler for the 8051 microcontroller family. It
translates symbolic assembly language mnemonics into relocatable object code
where the utmost speed, small code size, and hardware control are critical. The
macro facility speeds development and conserves maintenance time since
common sequences need only be developed once. The A51 assembler supports
symbolic accessto all features of the 8051 architecture and is configurable for
the numerous 8051 derivatives.

Functional Overview

The A51 assembler trangdlates an assembler source file into a relocatabl e object
module. If the DEBUG control is used, the object file contains full symboalic
information for debugging with dScope or an in-circuit emulator. In addition to
the object file, the A51 assembler generates alist file which may optionally
include symbol table and cross reference information. The A51 assembler is
fully compatible with Intel ASM-51 source modules.

Configuration

The A51 assembler supports al members of the 8051 family. The special
function register (SFR) set of the 8051 is predefined. However, the NOM OD51
control lets you override these definitions with processor-specific include files.
The A51 assembler is shipped with include files for the 8051, 8051Fx, 8051GB,
8052, 80152, 80451, 80452, 80515, 80C517, 80C515A, 80C517A, 8x552,
8xCH92, 8xCL 781, 8xCL410 and 80C320 microcontrollers. You can easily
create include files for other 8051 family members.

Keil Software 8051 Demo Kit

39

Listing File Example

The following example shows alisting file generated by the A51 assembler
during assembly. The listing file contains source code, machine code generated,
directive information, and a symbol table.

A51 MACRO ASSEMBLER Test Program 07/ 01/ 95 08: 00: 00 PAGE 1

DOS MACRO ASSEMBLER A51 V5. 02
OBJECT MODULE PLACED | N SAMPLE. OBJ
ASSEMBLER | NVOKED BY: C:\ C51\ Bl M A51. EXE SAMPLE. A51 XREF

LOC OBJ

0000 020000 F

0000 120000 F

0003 C200 F 21
0005 900000 F 22
0008 120000 F 23
000B 120000 F 24
000E 80F5 25

26
---- 27

0000 54455354 28
0004 2050524F
0008 4752414D
000C 00
29
30
31
---- 32
0000 33
34
35

SOURCE
$TI TLE (' Test Program)
NAMVE SAVPLE

EXTRN CODE (PUT_CRLF, PUTSTRING InitSerial)
PUBLIC TXTBI T

PROG SEGVENT CCODE

CONST SEGVENT CODE

Bl TVAR SEGVENT BIT
CSEG AT 0

Reset: JWMP Start

RSEG PROG

*ok ok Kk

§art: CALL InitSerial ;Init Serial Interface

; This is the main program It is an endl ess
; loop which displays a text on the consol e.

CLR TXTBIT ; read from CODE
Repeat: MOV DPTR, #TXT

CALL PUTSTRI NG

CALL PUT_CRLF

SIMP Repeat

RSEG CONST
TXT: DB " TEST PROGRAM , 00H

RSEG BITVAR ; TXTBIT=0 read from CODE
TXTBIT: DBIT 1 ; TXTBI T=1 read from XDATA

END

XREF SYMBOL TABLE LI STI NG

NAME

BI TVAR .
I'NI TSERI AL .
PROG . . .
PUTSTRI NG
PUT_CRLF .
REPEAT .
RESET.
SAVPLE .
START.

TXT. . .
TXTBIT .

TOOZOOOOOOOW

TYPE VAL UE ATTRI BUTES / REFERENCES

SEG 0001H REL=UNIT 9# 32
SEG 000DH REL=UNIT 8# 27
ADDR ----- EXT 4# 17
SEG 0010H REL=UNIT 7# 15
ADDR ----- EXT 4# 23
ADDR ----- EXT 4# 24
ADDR 0005H SEG=PROG 22# 25

R
ADDR 0000H A 13#

NUMB ----- 2

ADDR 0000H R SEG-PROG 13 17#

ADDR 0000H R SEG=CONST 22 28#
ADDR 0000H. 0 R SEG=BITVAR 5 5 21 33#

REG STER BANK(S) USED: 0

ASSEMBLY COWPLETE.

0 WARNING(S), 0 ERROR(S)

The A51 assembler
produces a listing file with
page numbers as well as
the time and date of the
assembly. Remarks about
the assembler invocation
and the object file output
are displayed in this listing.

Typical programs start with
EXTERN, PUBLIC, and
SEGMENT directives.

The listing file includes a
line number for each
source line.

If a source line generates
code, the HEX values are
displayed at the beginning
of the line.

Error messages and
warning messages are
included in the listing file.
The position of each error
is clearly marked.

The XREF assembler
option produces a cross
reference list. The cross
reference report shows all
symbols and the line
numbers in which they are
used. The line number
where the symbol is
defined is marked with a
pound symbol (‘#).

The register banks used,
and the total number of
warnings and errors is
stated at the end of the
listing file.

40

Chapter 4. 8051 Development Tools

BL51 Code Banking Linker/Locator

The BL51 code banking linker/locator combines one or more object modules
into a single executable 8051 program. The linker also resolves external and
public references, and assigns absol ute addresses to rel ocatable programs
segments.

The BL51 code banking linker/locator processes object modules created by the
Keil C51 compiler and A51 assembler and the Intel PL/M-51 compiler and
ASM-51 assembler. Thelinker automatically selects the appropriate run-time
library and links only the library modules that are required.

Normally, you invoke the BL51 code banking linker/locator from the command
line specifying the names of the object modules to combine. The default
controls for the BL51 code banking linker/locator have been carefully chosen to
accommodate most applications without the need to specify additional directives.
However, it is easy for you to specify custom settings for your application.

Data Address Management

The BL51 code banking linker/locator manages the limited internal memory of
the 8051 by overlaying variables for functions that are mutually exclusive. This
greatly reduces the overall memory requirement of most 8051 applications.

The BL51 code banking linker/locator analyzes the references between functions
to carry out memory overlaying. You may usetheOVERLAY directive to
manually control functions references the linker uses to determine exclusive
memory areas. The NOOVERLAY directive lets you completely disable
memory overlaying. These directives are useful when using indirectly called
functions or when disabling overlaying for debugging.

Keil Software 8051 Demo Kit

41

Code Banking

The BL51 code banking linker/locator supports the ability to create application
programsthat are larger than 64 Kbytes. Since the 8051 does not directly
support more than 64 Kbytes of code address space, there must be external
hardware that swaps code banks. The hardware that does this must be controlled
by software running on the 8051. This processis known as bank switching.

The BL51 code banking linker/locator |ets you manage 1 common area and 32
banks of up to 64 Kbytes each for atotal of 2 Mbytes of bank-switched 8051
program space. Software support for the external bank switching hardware
includes a short assembly file you can edit for your specific hardware platform.

The BL51 code banking linker/locator |ets you specify the bank in which to
locate a particular program module. By carefully grouping functionsin the
different banks, you can create very large, efficient applications.

Common Area

The common areain a bank switching program is an area of memory that can be
accessed at al times from al banks. The common area cannot be physically
swapped out or moved around. The code in the common areais either duplicated
in each bank (if the entire program areais swapped) or can be located in a
separate area or EPROM (if the common areais not swapped).

The common area contains program sections and constants which must be
available at all times. It may also contain frequently used code. By defaullt, the
following code sections are automatically located in the common area:

= Reset and Interrupt Vectors,

= Code Constants,

= C51 Interrupt Functions,

= Bank Switch Jump Table,

= Some C51 Run-Time Library Functions.

42

Chapter 4. 8051 Development Tools

Executing Functions in Other Banks

Code banks are selected by additional software-controlled address lines that are
simulated using 8051 port I/O lines or a memory-mapped latch. The BL51 code
banking linker/locator generates ajump table for functionsin other code banks.
When you call afunction in adifferent bank, your program switches the bank,
jumps to the desired function, and, when the function compl etes, restores the
previous bank), and returns execution to the calling routine.

The bank switching process requires approximately 50 CPU cycles and
consumes an additional 2 bytes of stack space. Y ou can dramatically improve
system performance by grouping interdependent functionsin the same bank.
Functions which are frequently invoked from multiple banks should be located in
the common area.

Keil Software 8051 Demo Kit

43

Listing File Example

The following example shows a map file created by the BL51 code banking

linker/locator:

BL51 BANKED LI NKER/ LOCATER V3. 52 07/01/95 08:00:00 PAGE 1

MS- DOS BL51 BANKED LI NKER/ LOCATER V3. 52, | NVOKED BY:
C:\ C51\ BI N\ BL51. EXE SAMPLE. OBJ

MEMORY MODEL: SMALL

I NPUT MODULES | NCLUDED:
SAMPLE. GBJ (SAMPLE)
C:\ C51\ LI B\ C51S. LI B (?C_STARTUP)
C:\ C51\ LI B\ C51S. LI B (PUTCHAR)
C:\ C51\ LI B\ C51S. LI B (GETCHAR)
C:\ C51\ LI B\ C51S. LI B (TOUPPER)
C:\ C51\ LI B\ C51S. LI B (_GETKEY)

LINK MAP OF MODULE: SAMPLE (SAMPLE)
TYPE BASE LENGTH RELOCATI ON SEGMVENT NAME

* K K K X x ok DATA MEMORY * K K K Xk *k

REG 0000H 0008H ABSOLUTE "REG BANK 0"
DATA 0008H 0001H UNIT 2DT?GETCHAR
DATA 0009H 0001H UNIT _DATA GROUP_

000AH 0016H Frx GAP *xk
BIT 0020H.0 0000H. 1 UNIT 2Bl 2GETCHAR

0020H.1 00OOH. 7 *rx GAP *x*
| DATA 0021H 0001H UNIT 2STACK
* k* k * * *x % C O D E M E M O R Y * k* k * * *x *
CODE 0000H 0003H ABSOLUTE
CODE 0003H 0021H UNIT 2PR?MAI N?SAMVPLE
CODE 0024H 000CH UNIT 2C_C51STARTUP
CODE 0030H 0027H UNIT 2PR?PUTCHAR?PUTCHAR
CODE 0057H 0011H UNIT 2PR?GETCHAR?GETCHAR
CODE 0068H 0018H UNIT ?PR?_TOUPPER? TOUPPER
CODE 0080H 000AH UNIT 2PR?_GETKEY?_GETKEY

OVERLAY MAP OF MODULE: SAVPLE (SAMPLE)

SEGVENT DATA_GROUP
+--> CALLED SEGVENT START ~ LENGTH

2C_C51STARTUP mmeee e
+ -> ?PR?NAI N?SAVPLE

?PR?MAI N?SAVPLE 0009H 0001H
+- - > ?PR?GETCHAR?GETCHAR
+- -> ?PR?_TOUPPER?TOUPPER
+- - > ?PR?PUTCHAR?PUTCHAR

?PR?GETCHAR?GETCHAR - ---- -----

+--> ?PR?_GETKEY?_GETKEY
+--> ?PR?PUTCHAR?PUTCHAR

LI NK/ LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)

The BL51 code banking
linker/locator produces a map
file with the time and date of
the link/locate run.

The invocation line and the
selected memory module are
listed.

The link-map contains a table
of the memory usage of the
physical 8051 memory area.

The overlay-map displays the
structure of the program and
the location of the bit and data
segments of each function.

Error messages and warnings
are listed at the end of the
map file. These messages
indicate possible problems
during the link/locate run.

44

Chapter 4. 8051 Development Tools

OC51 Banked Object File Converter

The OC51 banked object file converter creates absolute object modules for each
code bank in a banked object module. Banked object modules are created by the
BL51 code banking linker/locator when you create a bank switching application.
Symbolic debugging information is copied to the absolute object files and can be
used by dScope or an in-circuit emulator.

Y ou may use the OC51 banked object file converter to create absolute object
modules for the command area and for each code bank in your banked object
module. Y ou may then generate Intel HEX files for each of the absolute object
modules using the OH51 object-hex converter.

OH51 Object-Hex Converter

The OH51 object-hex converter creates Intel HEX files from absolute object
modules. Absolute object modules can be created by the BL51 code banking
linker or by the OC51 banked object file converter. Intel HEX filesare ASCII
filesthat contain a hexadecimal representation of your application. They can be
easly loaded into a device programmer for writing EPROMS.

LIB51 Library Manager

The LIB51 library manager lets you create and maintain library files. A library
fileisaformatted collection of one or more object files. Library files provide a
convenient method of combining and referencing alarge number of object files.
Libraries can be effectively used by the BL51 code banking linker/locator.

The LIB51 library manager lets you create alibrary file, add object modulesto a
library file, remove object modules from alibrary file, and list the contents of a
library file. The LIB51 library manager may be controlled interactively or from
the command line.

Keil Software 8051 Demo Kit 45

dScope-51 for Windows

dScope-51 isa source level debugger and simulator for programs created with
the Keil C51 compiler and A51 assembler and the Intel PL/M-51 compiler and
ASM-51 assembler. dScope-51 is a software-only product that lets you simulate
the features of an 8051 without actually having target hardware. Y ou may use
dScope-51 to test and debug your embedded application before actual 8051
hardware isready. dScope-51 simulates awide variety of 8051 peripherals
including the internal serial port, external 1/0, and timers.

Refer to “dScope Simulator/Debugger Overview” on page 55 for examples that
show how to use dScope-51.

KuVision/51 for Windows

pVision/51 is an integrated software development platform that includes a full-
function editor, project manager, make facility, and environment control for the
Keil 8051 tools. When you use pVision/51, you no longer have to learn the
command-line syntax of any of the tools. pVision/51 speeds your embedded
application development by providing the following:

s Standard Windows user interface,

= Dialog boxes for all environment and development tool settings,

= Multiple file editing capability,

= Full-function editor with user-definable key sequences,

= Application manager for adding external programs into the pull-down menu,
= Project manager for creating and maintaining projects,

= Integrated make facility for building target programs from your projects,

= On-line help system.

Refer to “pnVision IDE Overview” on page 48 for examples that show how to use
pVision/51.

46

Chapter 4. 8051 Development Tools

Keil Software 8051 Demo Kit 47

Chapter 5. Using the 8051 tools

To make it easy for you to evaluate and become familiar with our 8051 product
line, we provide an evaluation diskette with sample programs and limited
versions of our tools. The sample programs are aso included with our standard
product Kits.

This chapter introduces the primary user-interface products, pVision and
dScope, and shows you how to use them to compile, link, and run the provided
sample programs. The following sections are included in this chapter:

= Starting pVision and dScope,

= pVision integrated development environment overview,

= dScope simulator/debugger overview,

= Sample programs,

= Building and running the HELLO sample program,

= Building and running the MEASURE sample program,

= Building the BADCODE sample program.

The examples and descriptions in this chapter are illustrated using our Windows-
based tools. These are the same tools distributed with our

C51 Demo Kit andC51 Evaluation Kit. Contact sales/support if you would

like a copy of our DOS-based evaluation kit.

NOTE

The C51 Evaluation Kit includes evaluation versions of our 8051 tools. The
evaluation tools are limited in functionality and the code size of the application
you can create. Refer to the “Eval Kit Notes” for more information on the
limitations of the evaluation tools. For larger applications, you need to
purchase one of our development kits. Refer to “Chapter 3. 8051 Product
Line” on page 13 for a description of the kits that are available.

48

Chapter 5. Using the 8051 tools

Starting pVision and dScope

Both pVision for Windows and dScope for Windows are standard Windows
applications. You launch them by double-clicking on the appropriate icon in the
program group created by the installation program.

a8 2
- . -\.- i

- =

Dptions Winirw Hp

L]
LI

uVision IDE Overview

pVision is an integrated software development platform that combines a robust
editor, project manager, and make facility. pVision supports all of the Keil tools
for the 8051, 251, and 166. pVision helps expedite the development process of
your embedded applications by providing the following:

Full-function editor with user-definable key sequences,

Application manager for linking external program files into the pull-down
menu,

Project manager for creating and maintaining your projects,

Integrated make facility for assembling, compiling, and linking your
embedded applications,

Dialog boxes for all environment and development tool settings.

Source window

Keil Software 8051 Demo Kit 49

About the Environment

In pVision, you may use the keyboard or the mouse to select menu commands,
settings, and options for the development tools. You may also use the keyboard
to enter program text.

The pVision screen provides you with a menu bar for command entry, a tool bar
where you can rapidly select command buttons, and one or more windows for
source files, dialog boxes, and information displays.

¥
w

o = [l Prajpc] Bon Cplions [l Windos lHelp l
(I (A B CIEIE) () e Menu bar
b
whaiis mdata uneiged abae 1_in = 0 p
mtatiz wdets onalgred Char T ouk & O
5| Tool bar
id) iztarmapt 4 eaing 1
Hicaived dals Lilarrapt
LEf CEI Im £}
1
KL = £
if [ig_fin % 1F Y= r owl] .
Wil J0_kiv+] = TR Vertical

1 / scroll bar

Af Tt im Pm b oudd
IR w Uil [0 aated]

alos

Status bar b dimabled = §: .

; Horizontal

(] /Hﬂ scroll bar
=

25| A}

50 Chapter 5. Using the 8051 tools

You can quickly access many of the features of pVision using the buttons on the
tool bar.

Print Tile horizontally

Save Tile vertically
Open Color syntax highlighting

New file Show occurrences

Find
Help
Repeat find
Paste text

Compile
Update
Build all

Copy selected text

Cut selected text

MVision lets you simultaneously open and view multiple source files. While
writing part of your C program in one window, you can refer to header file
information in another window. You can move and resize source windows using
the mouse or keyboard.

TEFH Iv|‘-_
PNEE, #|
mratic wdats waigned cher ©_im = o o e e e e e e
Buatic xdats wraigned chas ©_aat = 9 radd mein [vaddi
T —— ...-.-..........-.-.-........-...-..].-..-..........-......-.-.-.-....-.-.-.-........
s T PERERS £
mtatic vedd com tax ivedd] Emterropt 4 ueing - |
! radd com_initialise Jemid
T e R R Sl e S B R T ST
Facsdred dets intsrropk radd com bapdzsks |
maigred beodrwted
ir INE P= G
i AT el potohan |
BI = mnailgred char o) -
LE fiw_jin + 1) jm §@_mii] obay gowi_parla |
shaf [1_ine-+] = ISLF char &) :
|
finE cem pufichar [wedd]
T T
frraramitied dsts intsrrogt imaigreed crair com cheflen {wadd -
P TR = 0] melgwd char cwm_ Sl len |radd] @
I -
T = O T i e i . i s i et s e . i i i e
TIHER .C
Foi_in im B saij — T g
MmN = bbad [sobt+]: Pisfins TOEFL TiCPS PEF_LEC 10l
lre | | | |
1_disshied =] _ 'H”d Tlmmrcl_initialize desadi i
o[] Cm BNl CE

25| 4]

Keil Software 8051 Demo Kit

51

Editor

MVision’s built-in editor can be customized to emulate many popular text
editors. You can change key assignments for almost all editor functions. The
following table lists a few of the editor functions that are available:

Beginning of File
Beginning of Line
Beginning of Page
Cascade Windows
Close File

Copy to Clipboard
Cursor Down
Cursor Left
Cursor Right
Cursor Up

Cut to Clipboard
Delete

Delete Line

Delete to End of Line

Destructive Backspace Next Error

End of File

End of Line

End of Page
Exclusive Mark
Forward Quick Search
Forward Replace

Full Search

Insert Template

Mark Block

Mark Columns

Mark Lines
Move/Resize Window
New File

Open File

Page Down

Page Up

Paste from Clipboard
Previous Error
Previous Window
Print File

Repeat Last Search
Reverse Quick Search
Undo

Word Left

Word Right

Chapter 5. Using the 8051 tools

Menu Commands

Through pull-down menus on the menu bar and editor commands, you control
the pVision operations. You may use either the mouse or the keyboard to access
commands from the menu bar.

Tiwily Wadlins Heds
Al Aywwamihe T3

Filx Eiil Projesi s

wrsEfajn o)

PLIE G T ki
NLS1 Cerls Bashing Linker.
DASNTEGI Debapgers

i b s

Efar.

Fogdr v I Famigpescs
oy fordpameanla.

Kl

PeoF i EPEE Eiaianog

Sl pphnrg for T 06 Compies

The menu bar provides you with access to menus for file operations, editor
operations, project maintenance, external program execution (such as running
the dScope debugger/simulator or another program), development tool option
settings, window selection and manipulation, and on-line help.

Keil Software 8051 Demo Kit 53

Development Tool Options

MVision lets you set options for software development tools such as the C51
compiler and A51 assembler. Simply select the appropriate item from the
Options menu and use the mouse or the keyboard to change the options.

..|___i ¥ o Tt |

:HWHI Prrago Wl II:I? E
SPChycki [olante Canps

5 e has mu ey gk Poi gy | "'_'__;.':_-F
b ks Cregeee al oreda

I o e T lwhm i

e [1==7 8]

| (2] L0 PN EPa01), PO] St 5T Skl P

54

Chapter 5. Using the 8051 tools

Project Manager

Most embedded programs are composed of several source files. This means that
aproject includes alarge collection of individual files. Some files may require
compilation with the C51 compiler, some files may require assembly, and some
files may require custom tranglation in order to create atarget program.

To accommodate the intricacies of project maintenance, pVision includes a
project manager facility. The project manager gives you a method of creating
and maintaining a project so that the target program is always up-to-date. The
project manager can easily handle file-to-file dependencies, including file
nesting, as well as the exact sequence of operations required to build the target.

Use the project manager dialog box to define the source files that make up the
project; use the make commands from the Project menu to compile source files
and to generate the target; then, use the simulator and emulator commands from
the Run menu to execute, test, and debug your application.

AR i ESR TSN e B

=))
pewcen || | cmaca |
St . | e |

[IEETTRERE PR

[rmemibms |50 Cam e _I-J s | . |

I rmyn Bald & s 18 s

All aspects of a project are saved in a project file. The project file includes: the
source files that make up the target program; the compiler, assembler, and linker
command line options; the debugger and simulator options; and the make facility
options.

Keil Software 8051 Demo Kit 55

dScope Simulator/Debugger Overview

dScopeisasource level debugger/simulator for the entire Keil Software product
line. You can use dScope to debug the applications you develop using the C51
and C251 compilers and A51 and A251 assemblers. In addition, dScope lets you
debug application written using the Intel PL/M-51 compiler and the ASM-51
assembler.

dScope is a software-only product that simulates most of the features of 8051
microcontroller without actually having target hardware. 'Y ou can use dScope to
test and debug your embedded application before the hardware is ready. dScope
simulates awide variety of 8051 peripheralsincluding the seria port, external
I/0, and timers. Support for the various microcontroller derivativesis provided
through the use of dynamic link libraries (DLLS).

In addition to simulating the CPU, dScope interfaces directly to the 8051
monitor program MON51.

=|®
[Be e Gahg Periphersk elp
B - k| B A e
[fwirai 3] |5 3]S CEBIEET] [EET Menu bar
piula: WEASLUAE - -
CofiFiainti U9 CoTHDWS! - Dapdall Sephnied apoeay Djap mos mees | 100l bar
I THID » THOO | Godd fu melect moge I oo i) RA=I3 Eivid
F48-} TR« 1y F= nkarf Eimer [SSSSSSmmEmm—— RE=pf Epga
BB ETA 1T o weahle @iesr i SETHCE RA=DE @500
i, g, = 1, A= glohnl dnberr FEEl ETrE@
o — -
T clear _retords | | Fu L bialife 22 -m“ * DIES
Ebv: pristF | seRi) 4o dieplay diemb| puapia m?_.“._.
fr k44 while (10 | A5 Leap Tarswar [X
3 pringf [“‘nCcmsansg - | 1 Sk £ CimEn
E2T: getlang | liwdbea® | 8| . SiLEwa® | cwmdba®) Ao Lopul commandl 0 E' i ‘::
TRE: Wiew | e I i i
Fr for (4 @ @ cmdbuPli] b= @ s+e) cormert te upfe—— | Register
1] cmcbre® (2] = Eouspericsduf[i]] Ry window
" M =g a
-i-! I = Debug
p— el) i window
]
]
A Command
¥ window
:,' Serial
» window
-]
| [2 EECITN Gl Desae
| 1

56 Chapter 5. Using the 8051 tools

About the Debugger

In dScope, you may use the keyboard or the mouse to select menu commands,
step through your application, and select debugging options. The dScope screen,
pictured above, provides you with amenu bar for command entry, atool bar
where you can rapidly select command buttons, and several windows for
displaying registers, memory contents, serial 1/O, and commands. Y ou can
quickly display and hide the windows shown above with the buttons on the tool

bar.
Call stack window
Code coverage
window
CPU driver Toolbox window
Open object file Reset
Help
XN = E E R R E R E FE RS EE:
Symbol browser
Command window window
Debug window Memory window
Register window Performance
Serial window analyzer window

Watch window

Keil Software 8051 Demo Kit

57

CPU Simulation

dScope simulates virtually every derivative of the 8051 microcontroller. Support
for each CPU is provided through the use of DLLs. Before you load your target
application, you must select the appropriate CPU driver from the CPU driver
drop-down box on the tool bar. Y ou may also select the Load CPU driver
command from the File menu. The following CPU drivers are included with
dScope.

CPU Driver DLLs Supported Derivatives ‘
80320.DLL Dallas Semiconductor 80C320, 80C520, and 80C530.
8051.DLL 8051, 8031, 80C51, and 80C51

80515.DLL 80C515 and 80C535

80515A.DLL 80C515A and 80C535A

80517.DLL 80C517 and 80C537

80517A.DLL 80C517A and 80C537A

8051FX.DLL 8051FA, 8051FB, and 8051FC

8052.DLL 8052, 8032, 80C52, and 80C32

80552.DLL 8xC552

80751.DLL 8xC750, 8xC751, and 8xC752

80410.DLL 8xCL410

80781.DLL 8xCL781

dScope simulates up to 16 Mbytes of memory from which areas can be mapped
for read, write, or code execution access. dScope traps and reportsillegal
MEemOory accesses.

In addition to memory mapping, dScope also provides - EESTETITTN—

support for the integrated peripherals of the various e

8051 derivatives. The CPU'’s on-chip peripherals are 'r’l"" — %J
supported by the CPU driver in the DLL. S
You can select and display the on-chip peripheral : ::.n. i Eu::.

components using the Peripherals menu. You can al .. 7
change the aspects of each peripheral using the cont = = rean =

in the dialog boxes. C o

58

Chapter 5. Using the 8051 tools

The Debug Window

After you have loaded the appropriate CPU driver, you are ready to load your
target program. Y ou can use the button on the tool bar to open your object file,
or you can use the Load object file command from the File menu.

Once your application is loaded, the dScope debug window displays your C,
assembly, or PL/M-51 source text.

Comeands Jod Golilersd Seplell Sheplsbod Slepieri Sep

=11 vaad mmin fueaad) | /= sxmecution skarfe here efbm|
i SLON = @Sl e LGN mode 1, E-EiL USET. o
SR Ed L SC] i) |

=21 THID = S=20 fu THID Timer 1, smede 2. OB
=CDDAEH BZI oA THID: 245 . 02

] THI 1 eifl; /& THI Pl valee For 24
=, EOESH EED Ll THE{ G , #0eF '1
] TRl = N = TRI Elmer 1 rus

=L BILH LE 4] SETR RLLIREL S

Fal LF| n B #u T] gk Tl bta gend Fired
=]

CODDOEH BEM; SETH R T R A VRO e T
fa] prLALE Melle Mafléna | /= Lt prlsT Fundlien call
ki

- -

Three display formats are avail able from the Command menu in the debug
window. They are:

s View High Level. Thisdisplay format shows your original source text
exactly asit appears in your source files.

s View Mixed. Thisdisplay format shows your origina source text mixed
with the assembly code generated by the compiler or assembler.

» View Assembly. Thisdisplay format shows only the assembly code
generated for your source.

In addition to target program, the debug window can display atrace history of up
to 512 previously executed instructions. To enable the trace history, select the
Record Trace command from the Command menu in the debug window.

Keil Software 8051 Demo Kit 59

Command Window

Y ou interact with dScope by entering commands from the keyboard and
selecting options with the mouse. Y ou can enter nearly all dScope commandsin
the command window. dScope responds to the commands you enter at the
command prompt (*>").

— T . -
o

»

-

L]

bl

H

wruant

e maln

»f. Eals

H

[Tk =M ZoIOH Bresk Tesdtds TEE THE +
I | 1=]

You can interactively display and change variables, registers, and memory
locations from the command window. You can also enter assembly code to
patch or test parts of your program.

For example, you can type the following text commands at the command prompt:

DPTR Display the DPTR register.

R7 =12 Assign the value 12 to register R7.

time.hour Displays the hour member of the time structure.
time.hour++ Increments the hour member of the time structure.
index =0 Assigns the value 0 to index.

You are not limited to using the command window to control dScope. You can
also use the mouse to select pull-down menus from the menu bar and invoke
commands from the tool bar.

60

Chapter 5. Using the 8051 tools

Serial Window

dScope provides a serial window for serial input and output. Serial data output
from the simulated CPU is displayed in thiswindow. Charactersyou typein this
window are input to the simulated CPU.

Dimmpial
fapms s saEna e ss RESOTE MERSLUAFHEWT FELORDES ssmswm A M Ha

Thim Fprogras im & mimgles Hessursses® Escorder. [oo beasd
en the 300 TP asd records the dtate of Pork 4 and Fort S
Bl DR vnlTage on ThE For afalog inpuite BHE IWrgegh I83
command -t gyrfax cove § Parchian sTestsssissesssssmsssareae 5
Fmad I FE[n] I resd ind recorded seavorsamnks
bispleiy | O | dieplay sarrenl ssasurases! valises
Tisa | T ohi-mm-ed | 2@ bisma

Intervsl | 1 mmmm GkE | maf anberosl tose

Clear I L I clwar ssasurssent recosds
Bl (] | il magurans] Feerding
Start | & | sbart ssssuresent recording
e i e e e e e S o L T D W T |
Emy il =
o1
& E

This lets you simulate the CPU’s UART without the need for external hardware.

Watch Window

You can use the watch window to interactively display variables and complex
structures. This is useful when you want to see the effects or your program on a
buffer or data structure.

=] -

|B0) cmdbarf; Dy B % DBl I DB 0, BB
B 1dx: DxDO30

(B} Po: BFF

IE3) A3 1

| | -

Not only can you watch the variables in your program, you can also change them
using standard C expressions you enter at the command prompt in the command
window.

Keil Software 8051 Demo Kit 61

Performance Analyzer Window

dScope has a built-in performance analyzer that lets you record timing statistics
for functions and program blocks. Performance analysis results are displayed in
the performance analyzer window.

=

#1190 30 30 36 S0 GR TOOBE MOABIL

“urmpeca Tued)

[TEE

Eimard

clewr recards
AU] g

IR ST ST aREnTE

il _ | il

Y AT N e o e] [
iy oA [onmer [eeeon [Ae |6

The performance analyzer window shows the name of each function or memory
range of each block along with abar graph showing the percentage of time spent
in that function or block. Y ou may select afunction to view statistics in the
bottom portion of the performance analyzer window. The following statistics are
maintained for each function or program block:

min time
max time
avgtime
total time

count

Minimum time spent in the function or block,
Maximum time spent in the function or block,
Average amount time spent in the function or block,
Total time spent in the function or block,

Number of times the function or block was entered.

62

Chapter 5. Using the 8051 tools

Other Features

In addition to the features described above, dScope offers numerous other
functions that provide arobust debugging environment.

Functions

A powerful feature of dScopeisits ability to let you define and use C-like
functions for awide variety of applications. For example, you can create dScope
functions to manipul ate the on-chip peripherals, extend the command set of
dScope, and generate digital and analog input to hardware ports. There are three
types of functions available to dScope:

= User Functions extend the command scope of the debugger,
= Signal Functions generate input to the 8051 peripherals,

= Built-in Functions provide convenient utility routines (like printf and
memeset) that you can usein user or signal functions.

Refer to “Signal Functions” on page 83 for an example of how to use functions
in dScope.

Breakpoints

It is easy to set breakpoints on high-level statements, assembler instructions, and
conditional expressions. Simply move the mouse pointer to the line or

instruction and double-click. You can even set a breakpoint based on the type of
memory access type or repetition factor. When dScope reaches a breakpoint, it
can perform a wide range of operations-from simple probing to running macro
functions.

Keil Software 8051 Demo Kit 63

Code Coverage

dScope provides a code coverage function which marks the lines of code that
have been executed. In the debug window, lines of code which have been
executed are market with a plus sign (‘+’) in the left column.

Commands O0f Onlersd Seplel] Shepiaid Slepiiver] fiep
wnaigned ink pde /= tredex For c2

@ dnifisliae she sarisl dnterfece =

SCOM » du3A = trikialice @
ED = | = rhbernal Baw
PN |2 AR £ Gl D6 Sl

fu gwtup the timer § trberropt =/
Hg & FERIDD: awl Lims~ par

aElact mads 3
= pfart Eimer O
= afdEla LLeaf

You can use this feature when you test your embedded application to determine
the sections of code that have not yet been exercised. The Code Coverage dialog
box also provides useful information and code coverage statistics.

64

Chapter 5. Using the 8051 tools

Sample Programs

This section describes the sample programs that are included in our evaluation
kits and product kits. The sample programs are ready for you to run. Y ou can
use the sample programsto learn how to use our tools. Additionally, you can
copy the code from our samples for your own use.

The sample programs are found in the \cs1exampPLES\ directory. Each sample
program is stored in a separate subdirectory along with project files and batch
filesthat help you quickly build and evaluate each sample program.

The following table lists the sample programs and their directories.

Directory Description

\A51\ A51 is a sample program for the A51 assembler.

\BADCODE\ BADCODE is a sample program with a number of syntax errors. Use pVision
to open the BADCODE.PRJ project file and compile. pVision takes you to
each error in BADCODE.C. Refer to “BADCODE: An Example with Syntax
Errors” on page 89 for more information about this sample program.

\BL51_EX1\ BL51 EX1 demonstrates a bank switching application written in C. This
sample program invokes functions in different code banks. Build this program
using the BL51_EX1.PRJ project file.

\BL51_EX2\ BL51 EX2 demonstrates a C program that has constant messages stored in
different code banks. Build this program using the BL51_EX2.PRJ project file.
\BL51_EX3\ BL51_EX3 demonstrates a bank switching program that has only one module

with functions located in different banks. Build this program using the
BL51_ EX3.PRJ project file.

\BL51_EX4\ BL51_EX4 demonstrates a bank switching, Intel PL/M-51 program that calls
functions in different code banks. This program is the PL/M-51 equivalent to
BL51 EX1. Build this program using the BL51_EX4.PRJ project file. The
Intel PL/M-51 compiler is required.

\CSAMPLE\ The CSAMPLE sample program demonstrates a simple addition and
subtraction calculator. This sample program is a multiple module project that
you can build using the CSAMPLE.PRJ project file.

\DHRY\ The DHRY example is a DHRYSTONE benchmark program that calculates
and displays the dhrystones per second for the host CPU. This example is
mainly provided for benchmark enthusiasts. Build this program using the
DHRY.PRJ project file.

\FIB\ The FIB sample program generates fibonacci numbers and shows you how to
use the reentrant function attribute to declare recursive functions. Build this
sample program using the FIB.PRJ project file.

\HELLO\ The HELLO sample program is the embedded 8051 C Hello World program.
Use the HELLO.PRJ project file to build this program. Refer to “HELLO: Your
First 8051 C Program” on page 66 for more information about this sample
program.

\LSIEVE\ LSIEVE demonstrates the large model version of the sieve of Eratosthenes
prime number generator. This example is mainly provided for benchmark
enthusiasts. Build this program using the LSIEVE.PRJ project file.

Keil Software 8051 Demo Kit 65

Directory Description

\MEASURE\ The MEASURE sample C program collects analog and digital data. It
simulates a data acquisition system that might be found in a weather station or
in a process control application. Build this program using the MEASURE.PRJ
project file. Refer to “MEASURE: A Remote Measurement System” on page
73 for more information about this sample program.

\RTX_EX1\ The RTX_EX1 sample program demonstrates round-robin multitasking using
RTX-51 Tiny. Build this program using the RTX_EX1.PRJ project file.

\RTX_EX2\ The RTX_EX2 sample program demonstrates an RTX-51 Tiny application that
uses signals. Build this program using the RTX_EX2.PRJ project file.

\SAMPL517\ The SAMPL517 sample program provides an RPN-style calculator that takes

advantage of the 80C517 arithmetic processor. Build this program using the
SAMPL517.PRJ project file.

\SSIEVE\ The SSIEVE sample program demonstrates the small model version of the
sieve of Eratosthenes prime number generator. This example is mainly
provided for benchmark enthusiasts. Build this program using the
SSIEVE.PRJ project file.

\TDP\ The TDP sample program demonstrates how to use interrupt-driven serial 1/0O
to interface to an alarm clock driven by an interrupt-driven timer. Build this
program using the TDP.PRJ project file.

\TRAFFIC\ The TRAFFIC sample program shows how to control a traffic light using the
RTX-51 Tiny real-time executive. Build this program using the TRAFFIC.PRJ
project file.

\WHETS\ The WHETS example is a WHETSTONE benchmark program that calculates

and displays the number whetstones per second for the host CPU. This
example is mainly provided for benchmark enthusiasts. Build this program
using the WHETS.PRJ project file.

To begin using one of the sample files, you must switch to the directory in which
the sample resides. Then, you may use either the provided DOS batch files or
the pVision for Windows project file to build and test the sample program.

The following sections in this chapter describe how to use the tools to build the
following sample programs:

s HELLO: Your First C51 Program

» MEASURE: A Remote Measurement System

= BADCODE: An Example with Syntax Errors

66

Chapter 5. Using the 8051 tools

HELLO: Your First 8051 C Program

The HELLO sample program is located in the \csnExamPLESHELLO\V directory.
HELLO does nothing more than print the text “Hello World” to the serial port.
The entire program is contained in a single source filr,Lo.c, which is listed
below.

% & o o L e iiia-io--
HELLO. C
Copyright 1995 KEIL Software, |nc
.. */
#pragma DEBUG OBJECTEXTEND CODE /* pragma |ines can contain */
/* command |ine directives */
#i ncl ude <reg51. h> /* special function register declarations */
/* for the intended 8051 derivative */
#i ncl ude <stdio. h> /* prototype declarations for I/O functions */
/****************/
/* main program */
/****************/
void main (void) { /* execution starts here after stack init */
SCON = 0x50; /* SCON: npde 1, 8-bit UART, enable rcvr */
TMOD | = 0x20; /* TMOD: timer 1, node 2, 8-bit rel oad */
THL = Oxf3; /* THL: reload value for 2400 baud */
TRL = 1, /* TRL: timer 1 run */
Tl =1, [* TI: set Tl to send first char of UART */
printf ("Hello World\n"); /* the "printf’ function call */
while (1) { /* An enbedded program does not stop and */
Y A /* never returns. W' ve used an endl ess */
} /* loop. You may wish to put in your own */
} /* code were we’'ve printed the dots (...). */

This small application helps you confirm that you can compile, link, and debug
an application. You can perform these operations from the DOS command line,
using batch files, or from pVision for Windows using the provided project file.

Hardware Requirements

The hardware for HELLO is based on the standard 8051CPU. The only on-chip
peripheral used is the serial port. You do not actually need a target CPU because
dScope lets you simulate the hardware required for this program.

Keil Software 8051 Demo Kit 67

HELLO Project File

In pVision, applications are maintained in a project file. The project file
contains names of all source files associated with the project and also tells the
tools how to compile, assemble, and link to generate an executable target
program.

A project file, calledHELLo.PRI, has been created for HELLO. To load this
project file, select the Open command from the Project menu and open the
HELLO.PRJ project file from the\cs1ExamMPLESHELLO directory.

i Hame Lk dnams
" rEhlpmampewiadi m
[kafa pa 52 | S 1 'I!_..-i.h...:_..]
I Exchi
= B
il Fitwn ol Jpm Ik
[P ks 1 g ﬂ | - i &

68

Chapter 5. Using the 8051 tools

Editing HELLO.C

You can now edit HELLo.c. Select the Open command from the File menu.
pVision prompts you with the Open File dialog box. SeleetLo.c from the

files list and select the OK button.

ik Hame e danns = 1
o - "
Ty T :]I Torrn’ |
e ohi I
5 mmnplay
B bwia
T eadd Cuig.
= =
asd Fitwm ol jppn hryem
EETT] _ﬂ I:: [T _il

MVision loads and displays the contentstafiLo.c in a window.

k
s = [l Prajpc] Bon Cplione [l Windos lHelp k-]
|
I (@ WA G 1R () e
.
HELC .G
Cepyright 1902 MEEL Scftuars, Dme
¥
frzsgms DERUFS QLMETECTENE CoiE J* prages linss cen cemisdn stats 25l +
#% cosmarsd lims dirsctiver =
Beraliids caaght i & gpEclil fuRcties TEglitar detlEpalLanE -
f* far ithe intsnded BIZL decivetive &
Bare e sa @i e i pradaipe dmsjaralions Fed T Fearye® imrn ©
R R
redd main iveddl 1 #* sxecufion siacis hazs aftsr stack init -
FGEN = Gmil Ju EDGH: made 1, B-bik ULPT. eneble pews o
THEO |m Pmil J* THED: LhEan L. Edsls B, #-bLR peledd L
i = bxid: f* FHE: reland welos far $did beod &)
™l = 1r % THI: tiswr 1 m=umn il
T =1 LR ;] wal TT Wi wwmad FLie) cha of TRET */
printf {"Hellep Fooldin™] - J% the "primtf' fumction call g
while C8h o Jm pa embmdibed pEogies dess el §lap sl i f
i o' i THEWET TETLITIH. S CTE ofsd an endlsas L
1 % laop Tru may wizh te poit in yoor o= By
i /U pade warw ww"sw priibed She deda | i m i
= —
w1 (=]

Keil Software 8051 Demo Kit 69

Compiling and Linking HELLO

When you are ready to compile and link your project, click on the Build All

button on the tool bar or select the Make: Build Project command from the

Project menu. pVision begins to compile and link the source files in your
project and create an absolute object module that you can load into dScope for
testing. During the build, uVision displays the status in a window.

Eyee Fide HELLOS

Chgusd File HELLD ORI

Flagaed Toms BREREH

When the build is complete, pVision displays a message indicating the build is
finished.

Eowpm File HELLOLHE
Dhgusd Film HELLD

Flagasd Toms BRER 1N
Sawma Webs leaos i - Frgeo Linksd

=]

You may pressEsc at any time to halt the build.

NOTE

You should encounter no errors when you use pVision with the provided sample
projects. If pVision says it cannot find or run the compiler or linker, check your
PATH for the \C51\BIN directory. If it is not there, you must add it so that

MVision can find the compiler and the other tools. You can add the path
specifications in pVision when you select the Environment Pathspecs command
from the Options menu.

70

Chapter 5. Using the 8051 tools

Testing HELLO With dScope

Once the HELL O program is compiled and linked, you can test it with the

dScope debugger/simulator. In pVision, select the DS51 Simulator command
from the Run menu and presater when the dScope Command Arguments
dialog box displays.

MVision passes an initialization fileiéLLo.int) to dScope. This file contains
commands for dScope that load the CPU driver DLL and the HELLO sample

program.

When dScope loads, the following screen displays.

S cubeomeweses B

[Ny Sshy Ewiphsrsl [eip

OB KA =Rl SO duil] | B8
13 wasd msin juazd)d | /= smezution starks hare aFE

M SO = @l fu GLON: mode 0. B-Bal LAET

4l THOD 1= Sl f= THOR: Dismer 1, meie & B-

| THI = @xfl; A= THI reload uslus For 35

1 TRl E = TRl Eimer 71 run

) il L H = Fl: wwt TD be send Farsk

fe

o] grintt {"Halila Harldin©| A= bk ‘pringf” PorcEdlsn call

F1

bl Be 47] ia = e ik

FcS e

+
Cotmmars]

:' 5t
»

b

B

]

»

B

B

»

»

| WA B ZTCION Frvd Dol TEE TS i
[SRl e ri s B
NOTE

The first time you invoke dScope, you may need to change the fonts and colors
used for the different windows. Select the Colors and Fonts command from the
Setup menu to configure the different windows in dScope.

Keil Software 8051 Demo Kit 71

Running HELLO

To run the HELLO program, click on the Go button in the debug window or
enter g at the command prompt. The HELLO program executes and displays
the text “Hello World” in the serial window.

=
=
=

113 Merld

After HELLO outputs “Hello World,” it begins executing an endless loop. To
halt execution, click on the Stop button in the debug window or tgec.

After you have halted program execution, you may type: to leave the
dScope debugger.

Single-Stepping Through HELLO

You can single-step through the HELLO program using the Step buttons in the
debug window.

fepletl Sheplebnd Sheplreri Sep

| | e ey o
[Bl mL N

1 Tl gk T] bt gl Fired

CoMMamM W3 L) SO 3= | , Flnt [
13 imad main fwady | /o pmacubtios staris hare afie
00N = BSE: e ORCOM; Sele 1, B-wiD USRT. 4]
THID iz BBl fu THED, Timer 1, meds ¥, #-hj))
THI = Bxf¥ #m THI reloed veles For 2508
L fu A Tlew 1 rus
L] f
!

pruontt | “Hells Marldyn™) = Ehe ‘pristf” funciion call iy

el EMpey

bilda L1l '-mﬁﬂaﬂ

¥

First, make sure to reset the CPU driver. To do this, make sure program
simulation is halted, then type the following lines at the command prompt:

reset
g, main

72

Chapter 5. Using the 8051 tools

The reset command resets the simulated 8051 CPU. The g, mai n command
begins executing the program and stops when it reaches the main C function.

To step through the HEL L O program, click on the StepOver button in the debug
window. Each time you click on this button, the simulator executes one
statement. The current instruction is aways highlighted, but the highlight moves
each time you step. Y ou may continue stepping through your program by
clicking on the StepOver button.

Y ou may exit dScope at any time. To do so, halt execution of HELL O and enter
exit at the command prompt.

Keil Software 8051 Demo Kit 73

MEASURE: A Remote Measurement
System

The MEASURE sample program is located in the \C51\EXAMPLES\M EASURE\
directory. MEASURE runs aremote measurement system that collects analog
and digital data like a data acquisition systems found in a weather stations and
process control applications. MEASURE is composed of three source files:
GETLINE.C, MCOMMAND.C, and MEASURE.C.

MEASURE records data from two 8-bit digital ports and four 8-bit anal og-to-
digital inputs. A timer controlsthe ssmple rate. The sampleinterval can be
configured from 1 millisecond to 60 minutes. Each measurement saves the
current time and all of the input channelsto an 8 Kbyte RAM buffer.

Hardware Requirements

The hardware for MEASURE is based on the 80517 CPU. This microcontroller
provides analog and digital input capability. Port 4 and port 5 are used for the
digital inputs and ANO through AN3 are used for the analog inputs. Y ou do not
actually need atarget CPU because dScope lets you simulate all the hardware
required for this program.

74

Chapter 5. Using the 8051 tools

MEASURE Project File

The project file for the MEASURE sample program is called MEASURE.PRJ. TO
load this project file, select the Open command from the Project menu and open
MEASURE.PRJ from the\cs1ExaMPLESMEASURE directory. Select the Edit
Project command from the Project menu to display the Project Manager dialog

box.

e A I R ST A L
Sewrn Foas
Rk b e = J 1—“-.
L T (B | | e t
' | [e |
[IEETTRERE PR

[rmemibms |50 Cam e LI s | . |

¢ by P & e in s

The Project Manager dialog box shows the source files that compose the
MEASURE project. There are three source filesin this project.

MEASURE.C

MCOMMAND.C

GETLINE.C

This source file contains the main C function for the
measurement system and the interrupt routine for timer O.
The main function initializes al peripherals of the 80517 and
performs command processing for the system. Thetimer
interrupt routine, timer0, manages the real-time clock and the
measurement sampling of the system. Timer O was used to
maintain compatibility with the 8051 which can be used if
fewer input channels are required.

This source file processes the display, time, and interval
commands. These functions are called from main. The
display command lists the analog values in floating-point
format to give a voltage between 0.00V and 5.00V.

This source file contains the command-line editor for
characters received from the serial port.

To open a source file from the Project Manager dialog box, double-click on the
filename. To close the Project Manager dialog box, press Esc or click on the

Cancd button.

Keil Software 8051 Demo Kit 75

Compiling and Linking MEASURE

When you are ready to compile and link MEASURE, click on the Build All

button on the tool bar or select the Make: Build Project command from the

Project menu. pVision begins to compile and link the source files in MEASURE
and displays a message when the build is finished.

Once compiling and linking are complete, you are ready to begin testing the
MEASURE sample program.

76

Chapter 5. Using the 8051 tools

Testing MEASURE With dScope

The MEASURE sample program is designed to accept commands from the on-
chip serial port. If you have actual target hardware, you can use a host computer
or dumb terminal to communicate with the 80517 CPU. If you do not have
target hardware, you can use dScope to simulate the hardware. Y ou can also use
the serial window in dScope to provide serial input.

Once the MEASURE program is compiled and linked, you can test it with
dScope. In pVision, select the DS51 Simulator command from the Run menu
and pressenter when the dScope Command Arguments dialog box displays.

The initialization file that pVision passes to dScope automatically loads the CPU
driver and MEASURE program. Once these are loaded, dScope displays the
following screen.

[My Sshy Ewiphsrsl [eip

il

[e} LI TCR R TR i 8 A7
L EDa=H SETR ICPCHARLSAOED] E2D. 1]
C:EDaTH BET
Bl o
[- CirdsH L]
L DO3AH L
[L Eimaral deka)
CoBBIEH paue_gurron D _seapuresents
L, 3EH a7 THC [
EF wid sas_currenE_ssasurssenis [0 |
LB ik L i .

vuuvvuvvvvJ-E "
[

Keil Software 8051 Demo Kit

77

Remote Measurement System Commands

The serial commands that MEASURE supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must
be terminated with a carriage return.

Command Serial Text Description

Clear C Clears the measurement record buffer.

Display D Displays the current time and input values.

Time T hh:mm:ss Sets the current time in 24-hour format.

Interval | mm:ss.ttt Sets the interval time for the measurement samples. The

interval time must be between 0:00.001 (for 1ms) and
60:00.000 (for 60 minutes).

number of most recent samples to display with the read
command. If no count is specified, the read command
transmits all recorded measurements. You can read
measurements on the fly if the interval time is more than 1
second. Otherwise, the recording must be stopped.

Quit Q Quits the measurement recording.

Start S Starts the measurement recording. After receiving the start
command, MEASURE samples all data inputs at the specified
interval.

Read R [count] Displays the recorded measurements. You may specify the

Viewing Debug Symbols

The MEASURE sample program is configured for full debug information and
includes public and local symbols, line numbers, and high-level type
information. To view thisinformation, click on the Symbol Browser button on
the tool bar to open the symbol browser window. Then, select the Localsradio
button and the Options check box as shown below.

=TT BT
e TR T T T] A A il

F Cphaay

| I+l ¢

Lok LEE_CURRENT HEwoRERENTE(]

Leck TIMEED| |
0:OeDOS0IF 1 . uchar E
P

Lewhi _BEQD_ EWMOEX])
- Aeiiiailh bedfer PpEr B chsr W s
0 OelE0EE 1=dsx ink

B doin
O:DxDEIT orge wchar »
Ll (LBl RECSROE]) 5
e T ugnt s
Lock HEIHJ | = b
L:OaDem 1 osdbuf arrag| P8 of com| M ek

*|

dScope supports the drag and drop feature of Windows and lets you access the
symbolsthisway. Use the mouseto drag and drop theidx symbol from the
symbol browser window to the command window. The fully qualified symbol

78

Chapter 5. Using the 8051 tools

name with module name and function name are inserted as shown. The
qualifiers are separated by the backslash character (‘\'). Select the command
window and presEnter. dScope displays the valueidk.

You may filter the symbols displayed by selecting the memory space filter. |If
you clear the data check box, all symbols in the data memory area are removed
from the display.

You can specify a search mask to limit the symbols displayed. To limit the
symbol list to those beginning with the letter I, enter “I*” and click the Apply
button.

Viewing Memory Contents

dScope displays memory in HEX and ASCII in the memory window. Open the
memory window by clicking on the Memory button on the tool bar. In the
command window, enter the address range you want to view, for example:

D X: 0x0000, X: OxFFFF

Since the memory window cannot show the entire memory range at once, you
may use the scroll bars to scroll through the memory area. The bounds for
scrolling are defined by the address range specified, 0x0000 to OXFFFF for this
example.

EEESEEESEEERE
EEEIEEEREERR

EQ
2]
Bl
)
1]
]
L]
1]
3]
R
]
3]
2]

SEEZEEEZZIEEZE

To display the on-chip data memory, enter the following in the command
window.

D I:0x0000, |:OxFF

dScope can dynamically update the memory window while your application is
running. To toggle dynamic updating, select the Update Memory window
command from the Setup menu. When Update Memory window is checked,
dynamic updating is enabled.

Keil Software 8051 Demo Kit

79

Changing the View Mode

dScope lets you change the view mode in the debug window. Display the debug
window using the debug button on the tool bar. Then, to change the view mode,
open the Commands menu in the debug window and select View High level,
View Mixed, or View Assembly. For example, View Mixed changesto the
mixed source and assembly display.

(AT b ol GeTEGars) Sleplim Sepnsol Slepivad] ol

2z |- | /= anksroal Beud

j4E:@1F8H ari2 =T S E e e
i PLOM v kg JH gat e 6 Rl TG
4L

213 o pebup Ehe fleer O ankerrupk =
i L RER o : - -

IFEH E] 5 | T oL T LT
Fs TR = PEREDO fE ek Timer par
L3P A& [=1 THE &xil | , Mzl
21 F Tip @ PERIDD
EHiFEH aKiT: HEiLl T i il] . i
Ha TSO0 » THID § Quid /5 pelect meds .?I Viwa Tincs
C:31FEH Axna =L THOO | Cx B3) |, $3=02

HY: TEB E): Ju wlarl Lieee o |l feSasEE
L SAREH__abid. A TH _ TAidEaik 4
'I-]_'E_

The debug window shows intermixed source and assembly lines.

Program Execution

Before you begin simulating the MEA SURE program, use the Debug, Register,
and Serial buttons on the tool bar to display the debug, register, and serial
windows. You may disable other windows if your screen is not large enough.

From the toolbar, select the reset button to reset dScope. 1n the debug window,
select the View Mixed command from the Commands menu. Then, click on the
Steplnto button once.

Cograis Gol SeTiars) Sleplid Sepraol Sleplvar] Slop
35T, PR [™, e
E:I1EFPH -1 | H
CohiTaM WL [T
CilRTIH 0. H2 Rl Qx1ATR
C:TEMH HIU =0 Al), BEES
£:1&REH Lt LERELLE
L. LiEdlH [CTELIN 12 0]
L TREAH (=8]]
C:1EEF3H HIIE H. =T
E. | M T8 TR
CilRETH HIU Rl A
C 1 REEH (=]]
L:1eEH HIL A =
NLERN - PN T 1 1
= .lnj.

The Steplnto button lets you single-step through your application and into
function calls. Click on the Steplnto button afew more times to get to the loop
which clears the on-chip data space of the CPU.

80

Chapter 5. Using the 8051 tools

f :m;l
| Cogyramibs Gal OaTeGErs] Sleplom Sepeasl Sleplver] Slopl
C:1RTIH HZU PR3 RExTT [
£:1&TFH [=1] A
: W @R
L TATEH [B H Rl . @x1ATH
C:TEMEH HIU TP 0eEl), e
£: 18T Lt LEREELE
ColislH I, sHR main| B iED]
LT REaM CLE A
L:1REIH HELE H. E=eTn
L1 iEH T [TH
Cila@m™ HIU R A
ColRBEH CLE A
L:1e89H HELE A =
L L L fi21h

To skip the initialization code and go directly to the main function, select the
command window and enter “G,main”. dScope executes the startup code and
halts on the first statement in the main function.

Go Until Current Cursor Line

The current cursor line is the line which marks the current assembly or high-
level statement. You can move the line using the keyboard or the mouse.

dScope lets you use the current cursor line as a temporary breakpoint. Use this
feature to skip over code in your application. For example, you can skip over the
initialization code and stop one instruction before the main function is called.
You can do this in one of two ways:

= Variant 1: Move the cursor line to theJMP main instruction. You can
use the cursor keys or you can click the mouse on that line. Click on the
GoTilCurs button in the debug window. dScope starts execution at the
current program counter and stops at the current cursor line.

= Variant 2. Double-click, with the right mouse button, on th&V P main
instruction. This makes the selected line the current cursor line, starts
execution from the current PC, and stops when the current line is reached.

The program counter is now at thdM P main instruction.

Keil Software 8051 Demo Kit

81

|5|,|"|..-ur. Gl DeTEGrsl Bepdiom Gepantal Sepleer] Sl
| ST WIU PO, edxiT
el (=1] a

wL LETAH HEi AR, E

[FL i TRTIH 042 Rl @x1ATH

bC: TRTEH Hau =0 Al), B0ES
=L | BTEH L iHP RS

L TR LR H

WL HELE H.="TR

L | M I'n1 TR

*[| RTH WU Rl A

L RSN LR A

wHL-L] HILE o W=eIn
NOTE

After performing this command, the current cursor line and the current program
counter (PC) line are the same. The background color used for thelineisthe
PC highlight color.

Stepping Through High-Level Statements

Click on the Steplnto button in the debug window and dScope jumps to the main
function of the MEASURE sample program. Select the View High level
command from the debug window Commands menu.

-
|;u"u.-ur. Gl BeTEGrsi Sleptodl Slepntal Seplveri Siopi

Ci31ESH CIHE R, 802, 871371 Q1K)

C:MEM G S AP AlaEE, 190 A 1CE)

CAIECH Wfigd RET

15)

2m

i

FHF - S0 8 T e O T B e S T S SO T T O R S T R S T
0T . e WiIH FRIGASH

2IH - fessrssssssEsssssEsEsEsEssmEsmEsEmsEssmEE

G wndd spdm (vnigd 7 o fE maLn anbey F
kit jEmtn chr cadbu® [15] = commsnd §ngat
207 usmlpned char L /= amdex far <
FE] isslgiad kAl ide; = Dfvil BF S0F
1 I

When viewing your application in high level mode, the meaning of a step
changes to mean one high-level statement instead of one assembly instruction.
Click on the Steplnto button and watch as the current program counter line
moves down the screen.

NOTE
The SepOver button operates much like the Steplnto button with the exception
that a function call is considered a single statement.

82

Chapter 5. Using the 8051 tools

Stepping Out of a Function

On occasion, you may accidentally step into afunction unnecessarily. You can
use the StepOut button to complete execution of that function and return to the
statement immediately following the function call.

NOTE
You cannot StepOut from the main function because it isinvoked by a long jmp
(LIMP) rather than a call instruction.

Setting and Removing Breakpoints

Y ou can set an execution breakpoint in the debug window by double-clicking on
the desired source line. The selected lineis highlighted and a[BR n] labdl is
displayed at the end of theline. If we set a breakpoint onthe TR0 = 1 statement,
the debug window appears as follows:

e =
lll"'lll.:"" lll"llllll.l"!l
/= andex far card]

Cogprewsits 0l SaTESeul

F]
£
Fia Je indtimlize the corial interfaca
| ;i StoR e RelE,

B 1

2z i
Ha PEON | BaER

Gheplnnal Il

ummipned it 1de

% dnitialize
#u ankermal B
LTI]

EdE]

13 f= metup the Tiser O anterrugk = F |
218 =0 & PERLDOD /= wak Limed peril
HP Tiiie = FERIDD

&a TEDO - THIO daiid = palect mede 3|
e TEB e T /= [@]

b] Efps i /= anable Limer fl

=1l Bl L dimlabal ladacs

]

Click on the Go button and dScope starts execution from the current program
counter and stops when the breakpoint is reached. To remove a breakpoint,
double-click on the line containing the breakpoint.

Keil Software 8051 Demo Kit 83

Call Stack

dScope internally tracks function nesting as the program executes. Y ou can view
the function nesting at any time by opening the Call Stack window. Use the Call
Stack button on the tool bar to display Call Stack window.

Thisdialog box lists all currently nested - T
functions. Each line contains a nesting level T ———
number, the numeric address of the invoked i E'-.';!I.'.’. '..'" :

function, and the symbolic name of the function - -
if debug information is available. g |

Y ou can display the caller of afunction by akaeaib

selecting the function from the list. Then, you e |

can use the Show invocation button to display
the function call in the debug window.

Port Inputs

dScope provides two different ways to set digital and analog port inputs. You
can use the Peripheral menu in the main window to view and change the status of
input lines or you can enter 1/0 values in the command window. The following
commands change port values in the command window.

PORT4=0x23 set digital input PORT3 to 0x23.
Al N1=3. 3 set analog input AINL to 3.3 volts.

Signal Functions

dScope lets you create signal functions to provide an input signal for digital or
analog inputs. To load asignal function, halt program execution by clicking on
the Stop button in the debug window and enter the following command in the
command window.

I NCLUDE anal og. i nc

This loads the analog function from the file ANaLoG.INc. Thisfile defines a
signal function that adjusts the analog value that appears on analog channel O.
This function appears as follows.

SI GNAL void anal og0 (float limt) {
float volts;

printf ("ANALOX) (%) ENTERED\n", linmit);

while (1) { /* forever */
volts = 0;
while (volts <= limt) {

84

Chapter 5. Using the 8051 tools

ain0 = volts; /* anal og input-0 */
twat ch (30000); /* 30000 Cycles Tinme-Break */
volts += 0.5; /* increase voltage */
}
volts = limt-0.5;

while (volts >= 0.5) {
ain0 = volts;
twat ch (30000); /* 30000 Cycles Tinme-Break */
volts -= 0.5; /* decrease voltage */

}
}
}

After loading the analog include file, enter the following commandsin the
command window.

ANALOX0 (5. 0)
G

These commands set the limit for analog channel 0 to 5.0 volts and start program
execution.

Select the serial window and type D Enter. You should see the analog channel O
signal begin swinging from 0 to 5 volts.

Trace Recording

It is common during debugging to reach a breakpoint where you require
information like register values and other circumstances which led to the
breakpoint. dScope provides trace recording for this purpose.

To enable trace recording, select the Record trace command from the Commands
menu to toggle instruction trace recording. When trace recording is enabled,
dScope records up to 512 assembly instructions and register contents.

Y ou can use trace recording with the MEASURE example. Start running the
MEASURE program (click on the Go button in the debug window) and select
the serial window. MEASURE displays a menu and waits for input after
displaying Cormand. Inthe serial window, enter d.

When you enter this command, MEASURE begins to display measurement
values, the record time, two port values, and finally the analog input values.

Keil Software 8051 Demo Kit 85

11 =k Lime I]
Intersal | 1 @@ 8% 0T0 | S0 UADEFUE] TlEe I
Clanr | € 1 elesr SeaMUrsEsEnT resoron I
Lk 10 | guit sessursssnkt rlmr:l'.r_lg I
PLarl 1 B | élarl seadurases] Fetording I

Lepley current Hepsurssents, (E3C Ta aEort) []
LE# B 3035, I0S PRFF F5.FF MB'!I:‘.IFH1IIJIUFH.EIJML'EIJDH1I+

| 1

The serial window displays what you would see on adumb terminal connected to
the 80517’s serial port.

Click on the Stop button in the debug window. This halts program execution
immediately. Click on the View Trace button to view the trace buffer.

= -

Cogpramils Gol GaTRGrs) §iepOu Sepioeol Sieplverl Slopl
-8 1MW AL A
-3 &b Hau LER]
Fi (SR HF L] IR noEl
=1 L1358 i Ox151E
3 DmE ReBaISER
L1 Eial HEii [* =]
=L 1 51EH Ik il 5okl 521
HeC 1 TSIEH Hau]
BE 1 E1FH - Al kR
wL IREEH Lal "]
[152 [ETS A Rl
L TERIH (=8 Ol 5
[E - 1 I EH e CIL TN

The upper portion of the debug window shows the trace history. The lower
portion of the debug window shows instructions from the program counter. The
program counter line is the delimiter between the trace history and instructions
not yet executed.

The trace history lines begin with negative numbers. The newest trace buffer
entry is -1. The oldest entry is -511. When the buffer overflows, the oldest
entries are removed to make space for new entries.

You may scroll into the trace buffer using the keyboard or the mouse. The
register window shows the register contents for the selected instruction in the
trace buffer.

NOTE
Program execution must be stopped before you can view the trace buffer.

86

Chapter 5. Using the 8051 tools

Watchpoints

Watchpoints are used to view the contents of simple variables, structures, and
arrays. You may setup watchpoints using the Watchpoints dialog box. To
display this dialog box, select the Watchpoints command from the Setup menu.

The following steps show you how to define

two watchpoints: one for the variable sindex
which isan unsigned int and one for the
structure current which contains a nested
time struct. £ 1 15
| i sebmcama |
To add awatchpoint for sindex: Type o Bl -
si ndex in the Expr input line and click on B i
the Define watch button. T iR
CE 1] 1™ B 7 Benls 9 Luleply
To add awatchpoint for current: Type e |]

current inthe Exprinput line, select the
Multiple radio button to display structure
members on separate lines, and click on the Define watch button.

The watch window now contains the two watch expressions just defined.

The first watch expression shows the value of =

sindex onasingleline.

The second watch expression for current
generates much more output. Structure members
display on separate lines and are indented to
reflect the nesting level. The last few lines
display the data stored in the analog array.

The watch window updates at the end of each
execution command (Steplnto, StepOut, or Go).
Y ou may configure dScope to periodically
update the watch window during execution by

{E0) siredex: OxDOS0
|61 earrent: |
Eamaz |
moairs i
min=0
(111N
TETR]
]
porEEad
perLlhip
& L imy ©
[D])=D

L
L
[

P =
== a

N

selecting the Update Watch Window command from the Setup menu.

Keil Software 8051 Demo Kit 87

Breakpoints

Y ou use breakpoints to stop program execution on a given address or a specified
condition. Execution breakpoints are the simplest form; a function address or
line number specifies where to stop execution.

Y ou may want to halt program execution when a variable contains a certain
value. The following example shows you how to stop program execution when
the current.time.sec structure member is set to 3.

Select the Breakpoints command from the Setup menu to display the Breakpoints
dialog box. Inthe Expressioninput line, enter current.time.sec==3. Inthe
Count input line, enter 1. Select the Write check box (this option specifies that
the break condition is tested only when the expression is written to).

When you arefinished, click onthe Define I T

button to set the breakpoint. To test the ke Livoa e
breakpoint condition perform the following .
steps: I—:
b
=] 15
1. Reset dScope, S fbbed e |
a hpce s ek s
2. Begin executing the MEASURE sample R :"" ——
program (click on the Go button in the oot [hcrune
debug window), L mE
[r || mw vwmiain |

3. Press Enter inthe serial window at the
MEASURE command prompt.

After afew seconds, dScope halts execution. The program counter line in the
debug window marks the line in which the breakpoint occurred.

88

Chapter 5. Using the 8051 tools

Using the Performance Analyzer

dScope lets you perform timing analysis of your applications using the integrated
performance analyzer. Y ou can specify an address range or afunction for
dScopeto use. To prepare for timing analysis, enter the following commandsin
the command window.

PA main

PA timer0

PA cl ear _records

PA neasure_di spl ay

PA save_current _nmeasur enent s

PA read_i ndex

RESET PA /* Initialize PA */

These commands create the performance analyzer address ranges for timing
statistics. 'Y ou may create or view the ranges with the Setup Performance
Analyzer command in the Setup menu.

Perform the following steps to watch the performance analyzer in action:

1. Open the performance analyzer window using the button on the tool bar. The
display shows the ranges defined above. The <unspeci fied> line
accumulates all execution time outside the defined ranges,

2. Reset dScope,

3. Start program execution by clicking on the Go button in the debug window,

4. Select the serial window and type S Enter D Enter.

The performance analyzer window shows a bar graph for each range.

WL 10 30 M) 6 S0 6B TO BE BONGOL -

“urmpeca Tued)
sein .
timerd , I
clewr recards
wEd e di sl ey I
e surrent _seaturessnts
i nib

R R) e R e L] [
skl fonnis [oneaw [1asae s es

The bar graph is dynamically updated and shows the percent of the time spent
executing code in each range. Click on the range to see timing statistics for each
individual range.

Keil Software 8051 Demo Kit 89

BADCODE: An Example with Syntax
Errors

The \cs1ExAMPLESBADCODE\ directory contains afile called sabcobpe.c. This
file is used to demonstrate how pVision interacts with the compiler to help you
locate errors and warnings in your source program.

Open thesabcope.c file using the Open command in the File menu. Select the
Compile File command from the Project menu to compile the file. After
compilation, pVision determines that there are errors and displays an error
window for you to peruse.

You may use the cursor keys in the error window to scroll through the errors
generated by the compiler. As you move from line to line, the source window is
updated to reflect the line on which the error was encountered.

: typs frllown wedd
: miwpding Fonciien-preiatyps
THEE | Al il MERT-slLgls pEeleliEpe
fhis scurcs fils is full of scroTse ToO ClR LE# rEar Ldl: symiEx #Trex mear
orrwct asTerm lo thds fils rzar 14l: spriex sxrer near 00D
e - e "o wdefined LdeALlian
EFTILAE ETVLT TRAF Ch
¢ 'prinsd mdasing fonction-pretatype
fartrings": wnclosed rtring
v A58 umdapmbraled sipingichar senal
Errar Ldi: syriex errer near ‘primed

aftsure. Inc

oprright 15%5 FEIL

lincldos -atdic. -

primiEf [FE iln Foim 41

Fadbiod +m |
primief [“Fellow = Sldim. fellosr
prinkf [“End of Lez=pin"j

I

-]

<[] £ Cnl e
Ervid $16 ol ey P b LT 1B

When the error window displays, it may cover a portion of the source window.
Use the tile vertical or tile horizontal button to display the windows side-by-side.

90

Chapter 5. Using the 8051 tools

Keil Software 8051 Demo Kit 91

Chapter 6. Hardware Products

Keil Software offers a number of hardware products that you can useto assist in
8051 software development. Currently, our hardware products include:

= ProROM EPROM Emulator,

= MCB517A Evaluation Board,

= MCB520 Evaluation Board.

Each of these products is described in the following sections.

ProROM EPROM Emulator

ProROM is an EPROM emulator that connects between the parallel printer port
of your PC and the ROM socket of your target hardware. With ProROM, you
can rapidly develop and test your embedded target program.

It only takes afew seconds to download 64 Kbytes of program code to ProROM.
Y ou no longer have to rely on or wait for EPROM programmers and erasers that
may take several minutes between software iterations.

ProROM comes with an easy to use loader program that downloads your binary
or Intel HEX files. Additionally, you can use ProROM with the pVision
development environment to automate your build and load development cycle.

The ProROM EPROM emulator comes complete with:

= User's Manual,

= Software and file conversion utilities,
= ProROM EPROM Emulator,

= 28-pin DIP interface cable,

= PC parallel-port cable.

ProROM provides a quick, convenient solution for rapid software development.

92

Chapter 6. Hardware Products

MCB517A Evaluation Board

The MCB517A evaluation board is a single board computer that supports the
Siemens 80C517(A) microcontroller. The MCB517A lets you write and test
code for the 80C517(A) using the Keil Software 8051 devel opment tools and the
8051 monitor.

The MCB517A includes a user’'s manual that clearly describes the board and an
evaluation kit that includes a 2 Kbyte size-limited tool set. The tools provided
include:

s The C51 compiler,

s Ab1 assembler,

= pVision/51 IDE for Windows,

= dScope-51 simulator for Windows,

= 8051 Monitor program and dScope interface DLLS,
» all the necessary utilities,

= and several example programs.

The 8051 monitor lets you download and execute 8051 applications you develop
using the tools included with the package. You can build applications using
pVision and the C51 compiler and A51 assembler, and you can test and debug
applications using dScope and the monitor.

The MCB517A is a complete starter package for anyone interested in the
Siemens 517. Since the Siemens 517 CPU is a superset of the 8051 and 80515
the MCB517A board can be used also for projects using the 8051, 80C515(A)
and 80C517(A). The MCB517A uses for communication with the Monitor the
2nd serial interface of the 517 CPU, this frees up the standard 8051 serial
interface for the user application. The MCB517A is a complete starter package
for anyone interested in the Siemens 517.

Keil Software 8051 Demo Kit 93

MCB520 Evaluation Board

The MCB520 evaluation board is a single board computer that supports the
Dallas Semiconductor 87C520 microcontroller. The MCB520 lets you evaluate
the performance characteristics of the 87C520. Board configuration is
accomplished using clearly labeled DIP switches.

The MCB520 includes a user’'s manual that describes the board and data books
that describe the 87C520 architecture. A 2 Kbyte size limited tool set is also
included. The tools provided include:

s The C51 compiler,

= pVision/51 IDE for Windows,

= dScope-51 simulator for Windows,

= 8051 Monitor program and dScope interface DLLS,

= all the necessary utilities and example programs to help you get started.

The 8051 monitor program comes installed on the board. The monitor lets you
download and execute 8051 applications you develop using the tools included
with the package. You can build applications using pVision and the C51
compiler and you can test and debug applications using dScope and the monitor.

The MCB520 is a complete starter package for anyone interested in the
Dallas Semiconductor 87C520.

94

Chapter 6. Hardware Products

Keil Software 8051 Demo Kit 95

Chapter 7. Real-Time Kernels

This chapter discusses the different real-time operating systems that are available
for the 8051 microcontroller.

RTX-51 Real-Time Operating System

The RTX-51 real-time operating system is a multitasking kernel for the 8051
family of processorsthat simplifies the software design of complex, time-critical

applications.

There are two distinct versions of RTX-51:

RTX-51 Full

RTX-51 Tiny

which performs both round-robin and preemptive task switching
using up to four task priorities. RTX-51 Full worksin parallel
with interrupt functions. Signals and messages may be passed
between tasks using a mailbox system. Y ou can allocate and
free memory from amemory pool. You can force atask to wait
for an interrupt, time-out, or signal or message from another task
or interrupt.

which isasubset of RTX-51 Full. RTX-51 Tiny easily runson
single-chip 8051 systems without any external data memory.
RTX-51 Tiny supports many of the features found in RTX-51
Full with the following exceptions:

1. Task switching is accomplished by round-robin multitasking
and signals.

2. Preemptive task switching is not supported.
3. No message routines are included.

4. No memory pool alocation routines are available.

Therest of this section uses RTX-51 to refer to RTX-51 Full and RTX-51 Tiny.
Differences between the two are stated where applicable.

96

Chapter 7. Real-Time Kernels

Introduction

Many microcontroller applications require simultaneous execution of multiple
jobs or tasks. For such applications, areal-time operating system (RTOS) allows
flexible scheduling of system resources (CPU, memory, etc.) to several tasks.
RTX-51 implements a powerful RTOS which is easy to use. RTX-51 works
with all 8051 derivatives.

Y ou write and compile RTX-51 programs using standard C constructs and
compiling them with C51. Only afew deviations from standard C are required
in order to specify the task 1D and priority. RTX-51 programs a so require that
you include the real-time executive header file and link using the BL51 code
banking linker/locator and the appropriate RTX-51 library file.

Single Task Program

A standard C program starts execution with the main function. In an embedded
application, main is usually coded as an endless loop and can be thought of asa
single task which is executed continuously. For example:

int counter;

void main (void) {
counter = 0;

while (1) { /* repeat forever */
count er ++; /* increnment counter */
}
}

Keil Software 8051 Demo Kit

97

Round-Robin Program

A more sophisticated C program may implement what is called a round-robin
pseudo-multitasking scheme without using a RTOS. In this scheme, tasks or
functions are called iteratively from within an endlessloop. For example:

int counter;

void main (void) {
counter = 0;

while (1) { /* repeat forever
check_serial _io ();
process_serial _cnds (); /* process serial input
check_kbd_io ();
process_kbd_cnds (); /* process keyboard i nput
adj ust _ctrlr_parns (); /* adjust the controller
count er ++; /* increnment counter

*/

*/

*/

*/

*/

98 Chapter 7. Real-Time Kernels

Round-Robin Scheduling With RTX-51

RTX-51 also performs round-robin multitasking which allows quasi-parallel
execution of several endlessloops or tasks. Tasks are not executed concurrently
but are time-sliced. The available CPU time is divided into time slices and RTX-
51 assigns atime slice to every task. Each task is allowed to execute for a
predetermined amount of time. Then, RTX-51 switches to another task that is
ready to run and allows that task to execute for awhile. Thetime dices are very
short, usually only afew milliseconds. For this reason, it appears as though the
tasks are executing simultaneously.

RTX-51 uses atiming routine which isinterrupt driven by one of the 8051
hardware timers. The periodic interrupt that is generated is used to drive the
RTX-51 clock.

RTX-51 does not require you to have a main function in your program. It
automatically begins executing task 0. If you do have a main function, you must
manually start RTX-51 using the os_create task functionin RTX-51 Tiny and
the os_start_system function in RTX-51.

The following example shows a simple RTX-51 application that uses only
round-robin task scheduling. The two tasks in this program are simple counter
loops. RTX-51 starts executing task O which isthe function names j obo. This
function adds another task called j ob1. After j ob0 executesfor awhile, RTX-
51 switchesto jobl. After jobl executesfor awhile, RTX-51 switches back
to j ob0. Thisprocessisrepeated i ndefinitely.

#i ncl ude <rtx51tny. h>

int counterO;
int counterl;

void job0 (void) _task_ 0 {

os_create (1); /* mark task 1 as ready */
while (1) { /* | oop forever */
count er O++; /* update the counter */

}
}

void jobl (void) _task_ 1 {
while (1) { /* | oop forever */
count er 1++; /* update the counter */
}
}

Keil Software 8051 Demo Kit 99

RTX-51 Events

Rather than waiting for a task’s time slice to be up, you can uss thait

function to signal RTX-51 that it can let another task begin execution. This
function suspends execution of the current task and waits for a specified event to
occur. During this time, any number of other tasks may be executing.

Using Time-outs with RTX-51

The simplest event you can wait for with theewait function is a time-out

period in RTX-51 clock ticks. This type of event can be used in a task where a
delay is required. This could be used in code that polled a switch. In such a
situation, the switch need only be checked every 50ms or so.

The next example shows how you can useothevait function to delay
execution while allowing other tasks to execute.

#i ncl ude <rtx51tny. h>

int counterO;
int counterl;

void job0 (void) _task_ 0 {

os_create (1); /* mark task 1 as ready */
while (1) { /* | oop forever */
count er O++; /* update the counter */
os_wait (K_TMO, 3); /* pause for 3 clock ticks */

}
}

void jobl (void) _task_ 1 {

while (1) { /* | oop forever */
count er 1++; /* update the counter */
os_wait (K_TMO, 5); /* pause for 5 clock ticks */

}
}

In the above examplg,ob0 enablesj ob1l as before. But now, after
incrementingcount er 0, j ob0 calls theos_wait function to pause for 3 clock
ticks. At this time, RTX-51 switches to the next task, whichds1. After

jobl incrementscounter1, ittoo callsos wait to pause for 5 clock ticks.

Now, RTX-51 has no other tasks to execute, so it enters an idle loop waiting for
3 clock ticks to elapse before it can continue executistep.

The result of this example is thabunt er0 gets incremented every 3 timer ticks
and counter1 gets incremented every 5 timer ticks.

100 Chapter 7. Real-Time Kernels

Using Signals with RTX-51

Y ou can use the os_wait function to pause atask while waiting for asignal (or
binary semaphore) from another task. This can be used for coordinating two or
moretasks. Waiting for asignal works asfollows: If atask goesto wait for a
signal, and the signal flag is 0, the task is suspended until the signal issent. If
the signal flag is already 1 when the task queries the signal, the flag is cleared,
and execution of the task continues. The following exampleillustrates this:

#i ncl ude <rtx51tny. h>

int counterO
int counterli;

void job0 (void) _task_ 0 {

os_create (1); /* mark task 1 as ready */
while (1) { /* | oop forever */
if (++counter0 == 0) /* update the counter */
os_send_signal (1); /* signal task 1 */

}
}

void jobl (void) _task_ 1 {

while (1) { /* | oop forever */
os_wait (K SIG 0, 0); /* wait for a signal */
count er 1++; /* update the counter */

}
}

In the above example, j ob1l waitsuntil it receives asigna from any other task.
When it does receive asignal, it increments count er 1 and again waits for
another signal. j obo continuously increments count er 0 until it overflowsto 0.
When that happens, j ob0 sendsasignal to j obl and RTX-51 marks j obl as
ready for execution. j obl doesnot start until RTX-51 getsits next timer tick.

Keil Software 8051 Demo Kit 101

Priorities and Preemption

One disadvantage of the above program exampleisthat j ob1 isnot started
immediately when itissignaled by j ob0. In some circumstances, thisis
unacceptable for timing reasons. RTX-51 allows you to assign priority levelsto
tasks. When a higher priority task becomes available, it interrupts or preempts a
lower priority task. Thisiscalled preemptive multitasking or just preemption.

NOTE
Preemption and priority levels are not supported by RTX-51 Tiny.

Y ou can modify the above function declaration for j ob1 to giveit ahigher
priority than j ob0o. By default, all tasks are assigned a priority level of 0. This
isthe lowest priority level. The priority level can be O through 3. The following
example shows how to define j ob1 with apriority level of 1.

void jobl (void) _task_ 1 _priority_1 {

while (1) { /* | oop forever */
os_wait (K SIG 0, 0); /* wait for a signal */
count er 1++; /* update the counter */

}
}

Now, whenever j ob0 sendsasignal to j obi, j obl startsimmediately.

Compiling and Linking with RTX-51

RTX-51 isfully integrated into the C51 programming language. This makes
generating RTX-51 applications very easy to master. Y ou do not need to write
any 8051 assembly routines or functions. Y ou only have to compile your RTX-
51 programs with C51 and link them with the BL51 code banking linker/locator.

For example, you should use the following command lines with RTX-51 Tiny.

C51 EXAWPLE. C
BL51 EXAMPLE. OBJ RTX51TI NY

Use the following command lines to compile and link with RTX-51.

C51 EXAWPLE. C
BL51 EXAMPLE. OBJ RTX51

102 Chapter 7. Real-Time Kernels

Interrupts

RTX-51 worksin parallel with interrupt functions. Interrupt functions can
communicate with RTX-51 and can send signals or messages to RTX-51 tasks.
RTX-51 Full lets you assign an interrupt to a task.

Message Passing

RTX-51 Full supports message exchange between tasks with the following
functions: isr_recv_message, isr_send_message, os_send_message, and
0s wait.

A message is a 16-bit value which can be interpreted as a number or as a pointer
to amemory block. RTX-51 Full supports variable sized messages using a
memory pool system.

CAN Communication

Controller Area Networks are easily implemented with RTX-51/CAN. RTX-
51/CAN isaCAN task integrated into RTX-51 Full. An RTX-51 CAN task
implements message passing viathe CAN network. Other CAN stations can be
configured either with or without RTX-51.

BITBUS Communication

RTX-51 Full includes both master and slave BITBUS tasks supporting message
passing with the Intel 8044.

Keil Software 8051 Demo Kit 103

Events

RTX-51 supports the following events for the os_wait function:

A Timeout suspends the running task for a defined number of clock ticks.

AnInterval issimilar to atimeout, however, theinterval isintended for use
with tasks that must execute synchronoudly.

Signals are used for inter-task coordination.
M essages are used for exchange of messages. t
An Interrupt lets a task wait for an 8051 hardware interrupt. t

Semaphor es are used for management of shared system resources. ¥

t These events are available only in RTX-51 Full.

104 Chapter 7. Real-Time Kernels

RTX-51 Functions

The following table lists some of the RTX-51 functions aong with a brief
description and execution timing (for RTX-51 Full).

Function Description CPU Cycles

isr_recv_message t Receive a message (call from interrupt). 71 (with message)

isr_send_message t Send a message (call from interrupt). 53

isr_send_signal Send a signal to a task (call from interrupt). 46

os_attach_interrupt T Assign task to interrupt source. 119

os_clear_signal Delete a previously sent signal. 57

0s_create_task Move a task to execution queue. 302

os_create_pool T Define a memory pool. 644 (size 20 * 10 bytes)

os_delete_task Remove a task from execution queue. 172

os_detach_interrupt f Remove interrupt assignment. 96

os_disable_isr T Disable 8051 hardware interrupts. 81

os_enable_isr Enable 8051 hardware interrupts. 80

os_free_block t Return a block to a memory pool. 160

os_get_block T Get a block from a memory pool. 148

os_send_message T Send a message (call from task). 443 with task switch

os_send_signal Send a signal to a task (call from tasks). 408 with task switch
316 with fast task switch
71 without task switch

os_send_token t Set a semaphore (call from task). 343 with fast task switch
94 without task switch

os_set_slice T Set the RTX-51 system clock time slice. 67

0s_wait Wait for an event. 68 for pending signal
160 for pending message

T These functions are available only in RTX-51 Full.

Additional debug and support functionsin RTX-51 Full include the following:

Function Description ‘
oi_reset_int_mask Disables interrupt sources external to RTX-51.

oi_set_int_mask Enables interrupt sources external to RTX-51.

os_check_mailbox Returns information about the state of a specific mailbox.
os_check_mailboxes Returns information about the state of all mailboxes in the system.
os_check_pool Returns information about the blocks in a memory pool.

os_check_semaphore Returns information about the state of a specific semaphore.
os_check_semaphores Returns information about the state of all semaphores in the system.
os_check_task Returns information about a specific task.

os_check_tasks Returns information about all tasks in the system.

Keil Software 8051 Demo Kit 105

CAN Functions

The CAN functions are available only with RTX-51 Full. CAN controllers
supported include the Philips 82C200 and 80C592 and the Intel 82526. More
CAN controllers arein preparation.

CAN Function Description

can_bind_obj Bind an object to a task; task is started when object is received.
can_def_obj Define communication objects.

can_get_status Get CAN controller status.

can_hw_init Initialize CAN controller hardware.

can_read Directly read an object’s data.

can_receive Receive all unbound objects.

can_request Send a remote frame for the specified object.
can_send Send an object over the CAN bus.

can_start Start CAN communications.

can_stop Stop CAN communications.

can_task_create Create the CAN communication task.
can_unbind_obj Disconnect the binding between a task and an object.
can_wait Wait for reception of a bound object.

can_write Write new data to an object without sending it.

106

Chapter 7. Real-Time Kernels

Technical Data

Number of tasks

RAM requirements

Code requirements
Hardware requirements
System clock

Interrupt latency
Context switch time

Mailbox system

Memory pool system
Semaphores

256; max. 19 tasks active

40 .. 46 bytes DATA
20 .. 200 bytes IDATA (user stack)
min. 650 bytes XDATA

6KB .. 8KB

timer O or timer 1
1000 .. 40000 cycles
< 50 cycles

70 .. 100 cycles (fast task)
180 .. 700 cycles (standard task)
depends on stack load

8 mailboxes with 8 integer entries
each

up to 16 memory pools
8 * 1 hit

16

7 bytes DATA
3 * <task count> IDATA

900 bytes

timer O

1000 .. 65535 cycles
< 20 cycles

100 .. 700 cycles

depends on stack load

not available

not available
not available

Keil Software 8051 Demo Kit 107

Chapter 8. Command Reference

This chapter briefly describes the commands and controls for the Keil Software
8051 development tools. Commands and controls are listed in atabular format
along with adescription. Underlined characters represent abbreviations for the
particular control or directive.

108

Chapter 8. Command Reference

A51 Macro Assemblers

I nvocation: A51 sourcefile [directives]

A51 @ommandfil e

where

sourcefile is the name of an assembler sourcefile.

commandfile isthe name of afile which contains a complete command line
for the assembler including asourcefil e and directives. You
may use a command file to make assembling a source file easier
or when you have more directives than fit on the command line.

directives areparameterswhich are described in the following table.

A51 Controls

DATE(date)

DEBUG
ERRORPRINT][(filename)]
INCLUDE(filename)
MACRO

MPL

NOAMAKE

NOCOND

NOGEN
NOLINES

OBJECT][(filename)], NOOBJECT

PAGELENGTH(n)
PAGEWIDTH(n)

PRINT][(filename)], NOPRINT

REGISTERBANK (num, ...),
NOREGISTERBANK

RESET (symbol, ...)
SET (symboal, ...)
TITLE(title)

XREF

Meaning ‘

Places date string in header (9 characters maximum).
Includes debugging symbol information in the object file.

Outputs error messages to filename.

Includes the contents of filename in the assembly.
Enables standard macro processing.

Enables Intel-style macro processing.

Excludes AutoMAKE information from the object file.

Excludes unassembled conditional assembly code from the
listing file.

Disables macro expansions in the listing file.

Excludes line number information from the object file.
Excludes the assembler source code from the listing file.
Disables standard macro processing.

Disables predefined 8051-specific special function registers.
Excludes the symbol table from the listing file.

Excludes symbol definitions from the listing file.

Enables or disables object file output. The object file is
saved as filename if specified.

Sets maximum number of lines in each page of listing file.

Sets maximum number of characters in each line of listing
file.

Enables or disables listing file output. The listing file is
saved as filename if specified.

Indicates that one or more registerbanks are used or
indicates that no register banks are used.

Assigns a value of 0000h to the specified symbols.
Assigns a value of OFFFFh to the specified symbols.
Includes title in the listing file header.

Includes a symbol cross reference listing in the listing file.

Keil Software 8051 Demo Kit 109

C51 Compiler

I nvocation: C51 sourcefile [directives]
C51 @ommandfile
where

sourcefile is the name of a C sourcefile.

commandfile isthe name of afile which contains a complete command line
for the compiler including asourcefil e and di rectives. You
may use a command file to make compiling asource file easier
or when you have more directives than fit on the command line.

directives arecontrol parameterswhich are described in the following

table.

C51 Controls Meaning ‘

CODE Includes an assembly listing in the listing file.

COMPACT Selects the COMPACT memory model.

DEBUG Includes debugging information in the object file.

DEFINE Defines preprocessor names on the command line.

ELOATEUZZY Specifies the number of bits rounded during floating-point
comparisons.

INTERVAL Specifies the interval for interrupt vectors.

INTVECTOR(n), NOINTVECTOR Specifies offset for interrupt table, using n, or excludes
interrupt vectors from the object file.

LARGE Selects the LARGE memory model.

LISTINCLUDE Includes the contents of include files in the listing file.

MAXARGS(n) Specifies the number of bytes reserved for variable length
argument lists.

MOD517 Enables support for the additional hardware of the
Siemens 80C517 and its derivatives.

MODDP2 Enables support for the additional hardware of Dallas
Semiconductor 80C320/520/530 and the AMD 80C521.

NOAMAKE Excludes AutoMAKE information from the object file.

NOAREGS Disables absolute register addressing using ARn
instructions.

NOCOND Excludes skipped conditional code from the listing file.

NOEXTEND Disables 8051/251 extensions and processes only ANSI C
constructs.

NOINTPROMOTE Disables ANSI integer promotion rules.

NOREGPARMS Disables passing parameters in registers.

OBJECT](filename)], NOOBJECT Enables or disables object file output. The object file is

- - saved as filename if specified.

110

Chapter 8. Command Reference

C51 Controls Meaning

OBJECTEXTEND t
OPTIMIZE

RDER

PAGELENGTH(n)
PAGEWIDTH(n)

PREPRINT](filename)]

PRINT][(filename)]|, NOPRINT

REGEILE(filename)
REGISTERBANK

ROM({SMALL|COMPACT|LARGE})
SMALL

SRC

SYMBOLS

WARNINGLEVEL (17)

Includes additional variable type information in the object
file.

Specifies the level of optimization performed by the
compiler.

Locates variables in memory in the same order in which
they are declared in the source file.

Sets maximum number of lines in each page of listing file.

Sets maximum number of characters in each line of listing
file.

Produces a preprocessor listing file with all macros
expanded. The preprocessor listing file is saved as
filename if specified.

Enables or disables listing file output. The listing file is
saved as filename if specified.

Specifies the name of the generated file to contain register
usage information.

Selects the register bank to use functions in the source
file.

Controls generation of AJMP and ACALL instructions.
Selects the SMALL memory model.

Creates an assembly source file instead of an object file.
Includes a list of the symbols used in the listing file.
Controls the types and severity of warnings generated.

Keil Software 8051 Demo Kit

111

L51/BL51 Linker/Locator

I nvocation:

where

i nputli st

outputfile

commandfil e

directives

BL51 Controls

BL51 inputlist [TO outputfile] [directives]
L51 inputlist [TO outputfile] [directives]
BL51 @ommandfile

L51 @onmandfile

isalist of the object files and libraries, separated by commas,
that the linker includes in the final 8051 application.

is the name of the absolute object module the linker creates.

isthe name of afile which contains a complete command line
for the linker/locator including ani nput | i st and di recti ves.
Y ou may use acommand file to make linking your application
easier or when you have more input files or more directives than
fit on the command line.

are control parameters which are described in the following
table.

Meaning ‘

BANKAREA Specifies the address range where the code banks are
located.

BANKx * Specifies the starting address, segments, and object
modules for code banks 0 to 31.

BIT Locates and orders BIT segments.

CODE Locates and orders CODE segments.

COMMON * Specifies the starting address, segments, and object
modules to place in the common bank. This directive is
essentially the same as the CODE directive.

DATA Locates and orders DATA segments.

IDATA Locates and orders IDATA segments.

IXREF Includes a cross reference report in the listing file.

NAME Specifies a module name for the object file.

NOAMAKE Excludes AutoMAKE information from the object file.

NODEBUGLINES Excludes line number information from the object file.

NODEBUGPUBLICS Excludes public symbol information from the object file.

NODEBUGSYMBOLS Excludes local symbol information from the object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file.

NOMAP Excludes memory map information from the listing file.

112 Chapter 8. Command Reference

BL51 Controls Meaning

NOOVERLAY Prevents overlaying or overlapping local BIT and DATA
segments.

NOPUBLICS Excludes public symbol information from the listing file.

NOSYMBOLS Excludes local symbol information from the listing file.

OVERLAY Directs the linker to overlay local data & bit segments and
lets you change references between segments.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) fS_Iets maximum number of characters in each line of listing
ile.

PDATA Specifies the starting address for PDATA segments.

PRECEDE Locates and orders segments that should precede all others
in the internal data memory.

PRINT Specifies the name of the listing file.

RAMSIZE Specifies the size of the on-chip data memory.

REGEILE(filename) Specifies the name of the generated file to contain register
usage information.

RTX51 * Includes support for the RTX-51 full real-time kernel.

RTX51TINY * Includes support for the RTX-51 tiny real-time kernel.

STACK Locates and orders STACK segments.

XDATA Locates and orders XDATA segments.

T These controls are available only in the BL51 code banking linker/locator.

Keil Software 8051 Demo Kit 113

OC51 Banked Object File Converter

I nvocation: 0c51 banked_fil e
where

banked_file isthename of abanked object file.

OH51 Object-Hex Converter

I nvocation: OH51 absfile [HEXFILE(hexfile)]
where

absfile isthe name of an absolute object file.
hexfile isthe name of the Intel HEX file to create.

LIB51 Library Manager

I nvocation: LI B51 [comand]
where
conmmand isacontrol command described in the following table. If no

command is given, LIB51 enters an interactive command mode.

LIB51 Command Meaning

ADD Adds an object module to the library file.

CREATE Creates a new library file.

DELETE Removes an object module from the library file.

EXIT Exits the library manager interactive mode.

HELP Displays help information for the library manager.

LIST Displays module and public symbol information stored in the
library file.

114 Index
Index
Data TYPES....uuueieiiiieieeee e 23
Debuggingeuveeeeeeiiiiaaeiiiiins 35
— Function Return Values................ 30
HVision Generic PoINtersc..cccccueue.... 26
EdItOr ..o 51 Interfacing to Assembly................ 31
Mer_lu Commands.......ccccovvuvveeenn. 52 Interfacing to PL/M-51................. 31
OptIOI’?S ... 53 Interrupt FUNCHONScocveeen... 29
OVG-I’VIEW 48 Language Extensions.................... 22
Project Manager ... 54 Large model..........cccevverervervennnnnn. 25
.Sltartlng e 48 Library ROULINESovrerrereenn. 36
pVision/51 for Windows 45 Listing File EXample.............co...... 36
8051 Development Tools............... 19,20 Memory Modelsccevenenne. 25
8051 M|crocontrolle_r Family............. 19 Memory Specific Pointers 27
8051/251 Product Linecccceueee. 13 MEMOTY TYPES...vrverereerereeerereeens. 24
Parameter Passing..........ccccceeeenneee. 29
A POINEIScveeeerveieeeeceeeeeeeeeeeans 26
ABL 17 RgaI-Time Operating System 30
0] 0] 1o] 4 AU
A Configuration .. Reentiant Funcions. ..., 28
Functional Overview.................... 38 Register Optimizing...................... 30
Listing File Example.................... 39 Small model.' 25
A51 Macro Assembler Kit ... 17 C51 Compiler Kit.......cooovvreeeeniiinnnnn. 16
" . C51 Developer's Kitccccovcvvvennnen. 16
Additional items, document X X
(o70] g \VZ=T 0] 110] o J iv Cilt Professional Developer’s 15
: SRR
:Islfnn ... %]i CASJ{)Z"'d'"”'t')Z """"""""""""""""""" ljdg
can_bind_obj........cccceviiiiiiniinin,
AUTOEXECBAT oo o can_def obj.......ccccconniiii 105
B can_get_status.......cccceveevevviiieeiennnnnnn. 105
can_hw_init........ccoceeiiini, 105
Backing Up Your DiskS ..o, 7 can_read ... 105
BL51 code banking CaAN_TECERIVE.....oev ittt 105
liNKer/locatorc.ccceveveeeveennae, 40 can_request...........coovinin, 105
Code Banking.........ccocvceveveeennn. 41 CaAN_SENA....uviiiieiiiiiiieee e 105
COMMON AlCA ..neee i, 41 can_start ... 105
Data Address Management __________ 40 can_stop ... 105
Executing Functions in Other can_task_createcccceeveeiiiiinnenn. 105
BaANKS....cocvveecereieieieieeiniennas 42 can_unbind_obj........c.ocoiiiinnn. 105
Listing File Example.................. 43 CaAN_WaILevveieeeeiiiiieee e 105
bold capital text, use Ofc..c......... iv CAN_WILE ...evveieeiiiiiiieee e 105
Draces, USe Ofcccceveveeeeeeiereeininnens iv Changes to the Documentation............. 3
Choices, document conventions........... iv
C COMPACT .. 24,25
CONFIG.SYS....iiiiieeeeeeeee 6
C51 Compiler.......ooocuiiiiiiiiiieiieeeeeeen 21 courier typeface, uUse Ofcccveueae. iv
Code Optimizations...................... 32

Compact model...........coccvvvvennen. 25

Keil Software 8051 Demo Kit

115

D
DEBUG ...t 38
DeMO Kit...ooeveerieeenienecsereec e 2
Directory Structure........ccceeeeeevereeneenn 8
Disk Cacheccooevevrerecnenecsie e 11
Displayed text, document
CONVENLIONS.cveverieeeierieiesie e iv
DKBL...ooiiieiriere e 16
Document conventions...........ccceeeee. iv
Documentation Changes...........cccceevene.. 3
DOS-Based Product Installation........... 7
DOS-based tool requirements............... 6
double brackets, use ofccccooeneneen. iv
DS PSRN 17
dScope
Breakpoints........cccoeevvveerenennnnne. 62
Code Coverage........ccoovverererernnns 63
Command Windowc.cceeeuene 59
CPU Simulation..........cccvevenerens 57
Debug Window........cccccevceeveennnnee. 58
FUNCLIONS.......coiiiee e, 62
OVEIVIBW. ..o 55
Performance Analyzer
WiNdow.......cccceveveneieere e, 61
Serial Windowccccceevenenenenne 60
2 1] Lo TS 48
Watch Windowccccceeeienenee. 60
dScope-51 for Windows..................... 45
dScope-51 Simulator Kit.................... 17
E
ellipses, USe Ofccoevevireie s iv
ellipses, vertical, use ofcccceeerieenne iv
ENAESM.......ccoieice e 31
Environment Settings.........ccccoeeverennene 9
Evaluation Kit........cccooeeeeiiiiicieceen, 2
Evaluation Users........ccccoveeeecveeiecneenen, 3
Experienced USers........ccoceveeeveeieeneenne 3
F
Filename, document conventions......... iv
FRSL ..o 17
G

H
[= o 4
I
Improving System Performance......... 10
INstallationcccoeeveienenenineeee, 5
Installing the Software...........ccccceeeeee 7
101 1 £V o SO 29
INtroduction.........cccceveveneneneneneeee, 1
ISr_recV_MeSSage......oceeveveeneenens 102,104
isr_send_message.......ccocereeenens 102,104
isr_send signal.......cccoceeeiiieneneenn. 104
italicized text, Use Ofccccoecvrervrnennn. iv
K
Key names, document

CONVENLIONScoveiiniriiiecrieee e iv
L
LARGE.....ccccoovireisireec e 24,25
LIB51 library manager.........ccccceeeuee. 44
M
Manual TOPICS ...cvvvvrvrererreeereeeeeene 2
1Yo I 1 =S 43
MCB517A Evauation Board............. 92
MCB520 Evauation Board................ 93
N
NEW USENS.....cooieiiieieeieeeesiee e 3
NOMODSIL ...t 38
NOOVERLAYcoooeirevreeeesieeenn, 40
NOREGPARMS.......c.cccoevrrenrn. 29,31
@]
OBJECTEXTEND.....ccooeiririienn 35
OC51 Banked Object File

CONVEIES ... 44
OH51 Object-Hex Converter 44
oi_reset int mask.......ccooeevrvvvennnne, 104
0i_set int Maskccoceevvvvvnenniennnn, 104
OMPFBL....oiiiieeeereneeiens 20,31,35

116

Omitted text, document

CONVENLIONS......ovireiieie e iv
Optional items, document

CONVENLIONS......cviieiieie e iv
0s_attach interruptccccoeeeveneenen. 104
0s_check_mailboxXccceeeeveeennenee. 104
0s_check_mailboxes.........ccceeuveunene. 104
0S_check_pPoolcccocvrereieneicene 104
0s_check_semaphore.........c.cccceeunee. 104
0s_check_semaphores..........cc.cc...... 104
0S_check_task.......cccvvreveienennnnne 104
0S_check_tasksccccvvvvvvercnennnne 104
0s _clear_signalcccceeevenencnennnne 104
0S_Create Poolcccovveevrrerereereeennene 104
0S_Create tasK....c.ovevvvrererereriennens 104
0s_delete tasK......coovvvniereienniennne 104
0s_detach_interrupt..........ccceeevvreenen. 104
0S_disable IS ..ccocvvviieeieveceee 104
0S_enable iSr...ccoeieieeie e 104
0s _free blocK.......ccccocvvvriiiiininnns 104
0S_get bloCKcooeieviere e 104
0S_send_MesSage.......ccoevreveeene. 102,104
0S send_signalccooeeeieninenienne 104
0S_send_token.......c.coeevverenenncnn 104
0S St SliCe..iiiiiiie 104
(o 1SJV1TZ=) S 102,104
OVERLAY ..o, 40
P
PKSL s 15
Printed text, document

CONVENLIONS....ccvereeeerieeeieneeie s iv
ProROM EPROM Emulator 91
R
RAM DiSK..oovveeivirierinieesisesesieeneens 10
README. TXT oot 3
FEENTraNt ..o 28
REGPARMS.......ccooovieireesesiee 29
Reporting aproblemccocooeiennee. 4
Requesting Assistance...........ccooeveeeenee. 4
I L 95

BITBUS Communication........... 102

Compiling.....ccoeoerereneneneneeenee 101
Events......ccoevcevcien e, 99,103
Functions.........cccoeeeveecee e, 104
INEEITUPLS ... 102
Introductionccecoveeieieceenens 96
LinKingccoeerveeneneenieneeenes 101
Message Passing.......ccccoeeereenen 102
Preemption.........cocccveenenccnnene 101
Priorities.....coceeeieecicceceeeeee, 101
Round-Robin Scheduling.............. 98
Technical Data.......cccccoeeeveereenee. 106
Using SIgnals......cccoeeveeneeenienenn 100
Using TiMe-0ULS........ccceereerienns 99
RTX-51 Full Real-Time Kernd 17
S
sans serif typeface, use ofc.ce.eeee. iv
SMALL ot 24,25
SRC .. 31
System Requirements...........cccevevreenens 6
T
Technical SUPPOITcoeverereeieieieene, 4
Temporary Files.......ccccooviiniieienens 10
Types of USErS......ccoovvvveneneninenennns 3
U
USEN 1o 3
U151 o S 29
\
Variables, document conventions........ iv
vertical bar, use ofccovvevvveire. iv
W
What's Includedccccoovviiiieennnnnn.
Windows-Based Product
Installation.........ccccooeviieeiiiiiiiee e,
Windows-based tool
requiremMeNntS........ccocccvvvvieeeeeeeeeeeeeeen

Keil Elektronik GmbH
Bretonischer Ring 15

D-85630 Grasbrunn b. Munchen
Germany

(49) (089) 45 60 40 - 0 Phone
(49) (089) 46 81 62 Fax

E-Mail
saes@keil.com

World Wide Web
http://lwww.keil.com/

Keil Software, Inc.

16990 Dallas Parkway
Suite 120

Dallas, Texas 75248-1903
Sales: (800) 348-8051
Phone: (972) 735-8052
Fax: (972) 735-8055

